TaqPath[™] COVID-19 CE-IVD RT-PCR Kit INSTRUCCIONES DE USO

Prueba de RT-PCR en tiempo real multiplexada para la detección cualitativa de ácido nucleico del SARS-CoV-2

Número de catálogo A48067 Número de publicación MAN0019242 Revisión B.0

Para utilización en diagnóstico in vitro.

Life Technologies Corporation | 6055 Sunol Blvd | Pleasanton, CA 94566 Para ver las descripciones de los símbolos de las etiquetas o la documentación de los productos, diríjase a **thermofisher.com/**

symbols-definition.

EC REP Life Technologies Europe B.V.

Kwartsweg 2, 2665 NN Bleiswijk The Netherlands

El cliente es responsable del cumplimiento de los requisitos legales relacionados con los procedimientos y usos del instrumento.

La información incluida en esta guía está sujeta a cambios sin previo aviso.

EXENCIÓN DE RESPONSABILIDAD : EN LA MEDIDA DE LO ESTIPULADO POR LA LEY, THERMO FISHER SCIENTIFIC INC. Y/O SUS AFILIADOS NO SE HACEN RESPONSABLES POR DAÑOS ESPECIALES, INCIDENTALES, INDIRECTOS, PUNITIVOS, MÚLTIPLES O CONSIGUIENTES EN RELACIÓN CON O DERIVADOS DE ESTE DOCUMENTO, INCLUYENDO EL USO DEL MISMO.

Traducido del texto en inglés en la publicación Número MAN0019215 Rev. E.O.

|--|

Revisión	Fecha	Descripción	
E.0	15 de julio de 2020	 Se añadió Applied Biosystems[™] COVID-19 Interpretive Software v1.3 y Applied Biosystems[™] COVID-19 Interpretive Software v2.3. 	
		 Se eliminó Applied Biosystems[™] COVID-19 Interpretive Software v1.2, Applied Biosystems[™] COVID-19 Interpretive Software v2.1 y Applied Biosystems[™] COVID-19 Interpretive Software v2.2. 	
		 Se añadieron nuevas directrices para la recogida, el almacenamiento, el embalaje y el envío al "Limitaciones del ensayo" en la página 14. 	
		 Se añadió información sobre los valores de C_t de corte (Apéndice A, "Valores de Ct de corte para las dianas de ensayo"). 	
		 Se actualizaron las instrucciones sobre el sellado, mezclado en vórtex y centrifugado de las placas RT-PCR. 	
		 Se aportaron detalles adicionales sobre cómo nombrar los pocillos de control negativo en las placas de 384 pocillos con nombres únicos. 	
		Se actualizó la reactividad (inclusividad) (página 69).	
		 Se añadió más información sobre los experimentos de límite de detección del "Límite de detección (LdD)" en la página 67. 	
D.0	2 de junio de 2020	 Se eliminaron las instrucciones de mezclar pipeteando arriba y abajo 10 veces al preparar las placas RT-PCR. Se añadieron las instrucciones de agitar las placas durante 10–20 segundos para garantizar una mezcla correcta. 	
		 Se añadieron las instrucciones de desprecintar y volver a precintar las placas de extracción una a una cuando se preparan las placas RT-PCR de 384 pocillos. 	
		 Se actualizaron las instrucciones para crear un nombre único para cada pocillo de la placa física, no solo para los pocillos que contienen una muestra de paciente. 	
		 Se añadió el bloque de 384 pocillos del Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instrument. 	
		 Se añadió el QuantStudio[™] 5 Dx IVD Software para el Applied Biosystems[™] QuantStudio[™] 5 Dx Real-Time PCR Instrument. 	
		Se añadió COVID-19 Interpretive Software v2.2.	
		 Se actualizaron los requisitos de repetición de pruebas para las muestras con resultados no concluyentes. 	

Revisión	Fecha	Descripción	
C.0	1 de mayo de 2020	 Se actualizaron los tipos de muestra de las muestras de las vías respiratorias superiores (como por ejemplo hisopo nasofaríngeo, orofaríngeo, nasal, de cornete medio y aspirado nasofaríngeo) y muestras de lavado broncoalveolar (LBA) ("Uso previsto" en la página 8, "Limitaciones del ensayo" en la página 14 y "Flujo de trabajo" en la página 16). 	
		 Se añadieron procedimientos para realizar la RT-PCR con los siguientes instrumentos: Applied Biosystems[™] 7500 Real-Time PCR Instrument, Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instruments (bloque de 96 pocillos de 0,1 ml y bloque de 96 pocillos de 0,2 ml), Applied Biosystems[™] QuantStudio[™] 5 Dx Real-Time PCR Instrument y QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos). 	
		 Se añadieron nuevas versiones del software: Applied Biosystems[™] COVID-19 Interpretive Software v1.2 y Applied Biosystems[™] COVID-19 Interpretive Software v2.1. 	
		 Se cambió la vida útil del TaqPath[™] COVID-19 Control Dilution Buffer de 9 meses a 12 meses. 	
		 Se actualizaron las directrices para el ARN extraído (Capítulo 3, "Directrices para el ARN extraído de la muestra"). 	
		 Se actualizaron los requisitos para los controles basados en la adición de placas de RT-PCR en tiempo real de 384 pocillos ("Directrices para la RT-PCR" en la página 21). 	
		 Se añadieron las placas de reacción sin un código de barras como una opción para la RT-PCR en tiempo real (MicroAmp[™] Fast Optical 96-Well Reaction Plate, 0.1 mL, MicroAmp[™] Optical 96-Well Reaction Plate 0.2 mL, y MicroAmp[™] Optical 384-Well Reaction Plate). 	
		 Se crearon procedimientos aparte para preparar las reacciones de RT-PCR basadas en el volumen de partida de la muestra (≤ 200 μl o> 200 μl), la placa de RT-PCR (96 pocillos o 384 pocillos), y se añadieron instrucciones específicas para agitar y centrifugar la placa de reacción. 	
		 Se especificó que la nueva prueba debía realizarse con la muestra original ("Interpretación de los resultados" en la página 66). 	
		 Se actualizaron los requisitos de los controles en la interpretación de los resultados, basados en la adición de placas de RT-PCR en tiempo real de 384 pocillos ("Interpretación de los resultados" en la página 66). 	
		Se añadió "Sustancias interferentes" en la página 69.	
		Se eliminaron las referencias al COVID-19 Interpretive Software v1.1.	
B.0	27 de marzo de 2020	Descripción corregida del control MS2 Phage Control en la «Descripción del producto» desde el control de ADN hasta el control de ARN.	
		 Descripción ampliada de la información de asistencia y soporte técnico disponible en https:// www.thermofisher.com/contactus en «Asistencia al cliente y soporte técnico». 	
		• Se cambió la vida útil del TaqPath [™] COVID-19 Control Dilution Buffer.	
A.0	24 de marzo de 2020	Documento nuevo.	

Información importante sobre licencias: Este producto puede estar cubierto por una o más licencias de etiquetado de uso limitado. Mediante el uso de este producto, acepta los términos y condiciones de todas las licencias de etiquetado de uso limitado aplicables.

MARCAS COMERCIALES: Todas las marcas comerciales son propiedad de Thermo Fisher Scientific y sus subsidiarias a menos que se especifique lo contrario. Nasacort es una marca comercial de AVENTISUB LLC. Dymista es una marca comercial de Meda Pharmaceuticals Inc. NeilMed y Nasogel son marcas comerciales de NeilMed Products, Inc. Chloraseptic es una marca comercial de Medtech Products Inc. Bactroban es una marca comercial de GLAXOSMITHKLINE LLC. Similasan es una marca comercial de Similasan AG Corporation Switzerland.

©2020 Thermo Fisher Scientific Inc. Todos los derechos reservados.

Índice

CAPÍTULO 1 Información sobre el producto TaqPath [™] COVID-19 CE-IVD RT-PCR Kit	. 8
Uso previsto	8
Descripción del producto	. 9
Componentes y almacenamiento	10
Materiales necesarios no suministrados	. 10
Compatibilidad entre instrumento y software	. 13
Limitaciones del ensayo	14
Muestras y controles	. 15
Flujo de trabajo	. 16
CAPÍTULO 2 Antes de empezar	17
Advertencias y precauciones	. 17
Recogida, transporte y almacenamiento de las muestras	. 18
CAPÍTULO 3 Directrices para el ARN extraído de la muestra	19
Volúmenes de partida de la muestra	. 19
Directrices para la extracción de ARN	19
Añadir MS2 Phage Control	. 20
CAPÍTULO 4 Prepare las reacciones de RT- PCR	21
Directrices para la RT-PCR	. 21
Preparar las reacciones de RT-PCR (volumen de partida de la muestra ≤ 200 μl, placa de reacción de 96 pocillos)	22
Preparar las reacciones de RT-PCR (volumen de partida de la muestra ≤ 200 μl, placa de reacción de 384 pocillos)	24
Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 μl, placa de reacción de 96 pocillos)	27
Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 μl, placa de reacción de 384 pocillos)	29

	CAPÍTULO 5 Realice la RT-PCR usando el Applied Biosystems [™] 7500 Fast Dx Real-Time PCR Instrument
	Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series
	Configurar y ejecutar el 7500 Fast Dx Real-Time PCR Instrument
	CAPÍTULO 6 Realice la RT-PCR usando el Applied Biosystems [™] 7500 Fast Real-Time PCR Instrument
	Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series
	CAPÍTULO 7 Realice la RT-PCR usando el Applied Biosystems [™] 7500 Real-Time PCR Instrument
	Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series42Transfiera el archivo de la plantilla (archivo EDT) para el 7500 Real-Time43PCR Instrument43Configurar y ejecutar el 7500 Real-Time PCR Instrument (7500 Software v2.3)43
•	CAPÍTULO 8 Realice la RT-PCR usando el Applied Biosystems [™] QuantStudio [™] 5 Real-Time PCR Instrument
	Calibración del fluorocromo para la QuantStudio $^{^{ m M}}$ 5 Real-Time PCR Instrument $\ldots \ldots$ 46
	Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio [™] 5 Real-Time PCR Instrument
	Configurar y ejecutar el QuantStudio 5 Real-Time PCR Instrument (placas de 96 pocillos) 48
	Configurar y ejecutar el QuantStudio [™] 5 Real-Time PCR Instrument (placas de 384 pocillos) 50

CAPÍTULO 9 Realice la RT-PCR usando el Applied Biosystems [™] QuantStudio [™] 5 Dx Real-Time PCR Instrument
Calibración del fluorocromo para la QuantStudio [™] 5 Dx Real-Time PCR Instrument 53 QuantStudio [™] 5 Dx TD Software
Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio [™] 5 Dx Real-Time PCR Instrument (QuantStudio [™] 5 Dx TD Software)
(QuantStudio [™] 5 Dx TD Software)
Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio [™] 5 Dx Real-Time PCR Instrument (QuantStudio [™] 5 Dx IVD Software)
Instalar el archivo de plantilla en el QuantStudio [™] 5 Dx IVD Software
(QuantStudio [™] 5 Dx IVD Software)
CAPITULO 10 Realice la RT-PCR usando el Applied Biosystems QuantStudio 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos) 60
Calibración del fluorocromo para la QuantStudio [™] 7 Flex Real-Time PCR Instrument … 60 Transfiera el archivo de la plantilla (archivo EDT) al QuantStudio [™] 7 Flex Real- Time PCR Instrument (bloque de 384 pocillos)
Configurar y ejecutar el QuantStudio 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos) 61
CAPÍTULO 11 Análisis y resultados 64
Obtener el Applied Biosystems [™] COVID-19 Interpretive Software
CAPÍTULO 12 Características de rendimiento
Límite de detección (LdD)67Reactividad (inclusividad)69Sustancias interferentes69Reactividad cruzada71Evaluación clínica72

	APÉNDICE A	Valores de C _t de corte para las dianas de ensayo	74
1	APÉNDICE B	Documentación y soporte	75
	Docun	nentación relacionada	75
	Asiste	ncia al cliente y soporte técnico	. 75
	Garant	tía limitada del producto	76

Información sobre el producto TaqPath[™] COVID-19 CE-IVD RT-PCR Kit

Uso previsto

El TaqPath[™] COVID-19 CE-IVD RT-PCR Kit contiene los reactivos y controles para una prueba de reacción en cadena de la polimerasa de transcripción inversa en tiempo real (RT-PCR) para la detección cualitativa de ácido nucleico de SARS-CoV-2 en muestras de las vías respiratorias superiores (como por ejemplo hisopo nasofaríngeo, orofaríngeo, nasal, de cornete medio y aspirado nasofaríngeo) y muestras de lavado broncoalveolar (LBA) de individuos con presunta COVID-19.

Los resultados sirven para identificar ARN del SARS-CoV-2. Generalmente, el ARN del SARS-CoV-2 se detecta en muestras de las vías respiratorias superiores y lavado broncoalveolar (LBA) durante la fase aguda de la infección. Los resultados positivos indican la presencia de ARN de SARS-CoV-2. Para determinar el estado de la infección en el paciente es necesaria la correlación clínica con los antecedentes del paciente y otra información de diagnóstico. Los resultados positivos no descartan la posible infección de origen bacteriano o la coinfección por otros virus. El agente detectado puede no ser la causa inequívoca de la enfermedad. Los laboratorios podrían verse obligados a notificar todos los resultados positivos a las autoridades sanitarias competentes correspondientes.

Los resultados negativos no excluyen la posible infección por SARS-CoV-2 y no deben servir como único fundamento para las decisiones de tratamiento del paciente. Los resultados negativos deben combinarse con observaciones clínicas, antecedentes del paciente e información epidemiológica.

La prueba con el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit solo debe correr a cargo de personal de laboratorio clínico formado y cualificado, específicamente instruido y formado en técnicas de procedimientos de PCR en tiempo real y diagnóstico *in vitro*.

Nota: Los siguientes países requieren el marcado CE en los diagnósticos in vitro: Austria, Bélgica, Bulgaria, Croacia, Chipre, República Checa, Dinamarca, Estonia, Finlandia, Francia, Alemania, Grecia, Hungría, Irlanda, Italia, Letonia, Lituania, Luxemburgo, Malta, Países Bajos, Polonia, Portugal, Rumanía, Eslovaquia, Eslovenia, España, Suecia, Reino Unido, Noruega, Islandia, Liechtenstein, Suiza, Turquía.

Descripción del producto

El TaqPath[™] COVID-19 CE-IVD RT-PCR Kit contiene los siguientes componentes:

- TaqPath[™] COVID-19 RT-PCR Kit, 1000 reacciones
 - TaqPath[™] COVID-19 Assay Multiplex—Ensayos multiplexados que contienen tres conjuntos de cebadores/sondas específicos para diferentes regiones del genoma del SARS-CoV-2 y cebadores/sondas para el bacteriófago MS2.
 - MS2 Phage Control Control de ARN para verificar la eficacia de la preparación de la muestra y la ausencia de inhibidores de la reacción de PCR. Para realizar el control, añada el MS2 Phage Control a las muestras antes de la extracción del ARN.
- TaqPath[™] COVID-19 Control El control de ARN que contiene dianas específicas para las del genoma del SARS-CoV-2 al que se dirigen los ensayos.
- TaqPath[™] COVID-19 Control Dilution Buffer
- TaqPath[™] 1-Step Multiplex Master Mix (No ROX[™])
- Prospecto—Contiene las instrucciones y el enlace para descargar las instrucciones de uso.

Componentes y almacenamiento

Tabla 1	TaqPath [™]	COVID-19 CE-IVD RT-PCR Kit, 1000 reacciones (n.º de cat. A48067)
---------	----------------------	--

Componente	Contenido	Cantidad	Volumen por tubo o botella	Número de referencia	Almacena- miento	Vida útil ^[1]
	TaqPath [™] COVID-19 Assay Multiplex (Gene ORF1ab, N Protein, S Protein,	1 tubo	1500 µl (1000 reacciones)	100093311	Desde – 30 °C hasta	12 meses
TaqPath [™] COVID-19 RT-PCR Kit	MS2)				-10 °C	
	MS2 Phage Control	10 tubos	1 ml	100093312	Desde – 30 °C hasta –10 °C	12 meses
TaqPath [™] COVID-19 Control		10 tubos	10 μl (1 x 10 ⁴ copias/μl)	100093314	≤ –70 °C	12 meses
TaqPath [™] COVID-19 Control Dilution Buffer		10 tubos	250 µl	100093291	Desde – 30 °C hasta –10 °C	12 meses
TaqPath [™] 1-Step Multiplex Master Mix (No ROX [™])		1 botella	10 ml	A48111	Desde – 30 °C hasta –10 °C	12 meses

^[1] La vida útil del kit está determinada por el componente con la vida útil más corta.

Materiales necesarios no suministrados

A menos que se indique lo contrario, todos los materiales están disponibles en **thermofisher.com**. «MLS» indica que el material está disponible en **fisherscientific.com** u otro proveedor principal de productos de laboratorio.

Artículo	Origen			
Instrumento de PCR en tiempo real				
Applied Biosystems [™] 7500 Fast Dx Real-Time PCR Instrument	4406984 (con ordenador portátil)			
(usado con el SDS Software v1.4.1)	4406985 (con ordenador tipo torre)			
Applied Biosystems [™] 7500 Fast Real-Time PCR Instrument	4351106 (con ordenador portátil)			
(se usa con el SDS Software v1.5.1 o 7500 Software v2.3)	4351107 (con ordenador de sobremesa)			
Applied Biosystems [™] 7500 Real-Time PCR Instrument	4351104 (con ordenador portátil)			
(usado con el 7500 Software v2.3)	4351105 (con ordenador de sobremesa)			

(cont.)

Artículo	Origen		
Applied Biosystems [™] QuantStudio [™] 5 Real-Time PCR Instrument, bloque de 0,2 ml (usado con el QuantStudio [™] Design and Analysis Desktop Software v1.5.1)	A28569 (con ordenador portátil) A28574 (con ordenador de sobremesa) A28139 (solo instrumento)		
Applied Biosystems [™] QuantStudio [™] 5 Real-Time PCR Instrument, bloque de 0,1 ml (usado con el QuantStudio [™] Design and Analysis Desktop Software v1.5.1)	A28568 (con ordenador portátil) A28573 (con ordenador de sobremesa) A28138 (solo instrumento)		
Applied Biosystems [™] QuantStudio [™] 5 Real-Time PCR Instrument, bloque de 384 pocillos (usado con el QuantStudio [™] Design and Analysis Desktop Software v1.5.1)	A28570 (con ordenador portátil) A28575 (con ordenador de sobremesa) A28140 (solo instrumento)		
Applied Biosystems [™] QuantStudio [™] 5 Dx Real-Time PCR Instrument (se usa con el QuantStudio [™] 5 Dx TD Software v1.0.2 <i>o</i> QuantStudio [™] 5 Dx IVD Software v1.0.2)	A32005 (con ordenador portátil) A32006 (con ordenador tipo torre)		
Applied Biosystems [™] QuantStudio [™] 7 Flex Real-Time PCR Instrument, bloque de 384 pocillos (usado con el QuantStudio [™] Real-Time PCR Software v1.3)	4485695 (con ordenador portátil) 4485701 (con ordenador de sobremesa)		
Equipos			
Congeladores de laboratorio • Desde –30 °C hasta –10 °C • ≤ –70 °C	MLS		
Centrífuga, con un rotor para microplacas	MLS		
Microcentrífuga	MLS		
Mezclador de laboratorio, mezclador vórtex o equivalente	MLS		
Pipetas de un solo canal y multicanal ajustables (de 1,00 μl a 1000,0 μl)	MLS		
Bloque de frío (de 96 pocillos o de 384 pocillos) o hielo	MLS		
Kits y reactivos			
Agua sin nucleasas (no tratada con DEPC)	MLS		
Placas de calibración (serie 7500 Real-Time PCR Instrument)			
ABY [™] Dye Spectral Calibration Plate for Multiplex qPCR, Fast 96-well (0,1-ml)	A24734		

11

Ç,

(cont.)

Artículo	Origen		
JUN [™] Dye Spectral Calibration Plate for Mutliplex qPCR, Fast 96-well (0,1-ml)	A24735		
ABY [™] Dye Spectral Calibration Plate for Multiplex qPCR, 96-well (0,2-ml)	A24738		
JUN [™] Dye Spectral Calibration Plate for Mutliplex qPCR, 96-well (0,2-ml)	A24737		
Placas de calibración (QuantStudio [™] 7 Flex Real-Time PCR In	strument)		
ABY [™] Dye Spectral Calibration Plate for Multiplex qPCR, 384-well	A24736		
JUN [™] Dye Spectral Calibration Plate for Mutliplex qPCR, 384-well	A24733		
Tubos, placas y otros consumibles			
MicroAmp [™] Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL	4346906, 4366932		
MicroAmp [™] Fast Optical 96-Well Reaction Plate, 0.1 mL	4346907		
MicroAmp [™] Optical 96-Well Reaction Plate with Barcode, 0.2 mL	4306737, 4326659		
MicroAmp [™] Optical 96-Well Reaction Plate, 0.2 mL	N8010560, 4316813		
MicroAmp [™] Optical 384-Well Reaction Plate with Barcode	4309849, 4326270, 4343814		
MicroAmp [™] Optical 384-Well Reaction Plate	4343370		
MicroAmp [™] Optical Adhesive Film	4311971, 4360954		
MicroAmp [™] Adhesive Film Applicator	4333183		
Tubos de microcentrífuga sin ARNasa, antiadherentes (1,5 ml y 2,0 ml)	thermofisher.com/plastics		
Puntas de pipeta estériles con barrera para aerosoles (filtrada)	thermofisher.com/pipettetips		

Compatibilidad entre instrumento y software

En la siguiente tabla se enumera la versión del Applied Biosystems[™] COVID-19 Interpretive Software que es compatible con su instrumento y su software de análisis asociado.

Si desea información sobre cómo obtener el Applied Biosystems[™] COVID-19 Interpretive Software, consulte "Obtener el Applied Biosystems[™] COVID-19 Interpretive Software" en la página 64.

Para obtener el software o el firmware de análisis para usar con el instrumento de PCR en tiempo real, vaya a **thermofisher.com/qpcrsoftware** y seleccione su instrumento en la sección **Real-Time PCR (PCR en tiempo real)**.

Instrumento	Software de análisis usado con el instrumento	Versión del COVID-19 Interpretive Software compatible
7500 Fast Dx Real-Time PCR Instrument	SDS Software v1.4.1	v1.3
	SDS Software v1.5.1	
7500 Fast Real-Time PCR Instrument	0	v1.3
	7500 Software v2.3	
7500 Real-Time PCR Instrument	7500 Software v2.3	v1.3
QuantStudio [™] 5 Real-Time PCR Instrument con firmware de instrumento v1.3.3	QuantStudio [™] Design and	
Bloque de 96 pocillos, 0,2 ml	Analysis Desktop Software v1.5.1	v2.3
Bloque de 96 pocillos, 0,1 ml		
QuantStudio [™] 5 Real-Time PCR Instrument con firmware de instrumento v1.3.3	QuantStudio [™] Design and Analysis Deskton Software v1 5 1	v2.3
Bloque de 384 pocillos		
QuantStudio [™] 5 Dx Real-Time PCR Instrument con firmware de instrumento v1.0.3	QuantStudio [™] 5 Dx TD Software v1.0.2	v2.3
QuantStudio [™] 5 Dx Real-Time PCR Instrument con firmware de instrumento v1.0.3	QuantStudio [™] 5 Dx IVD Software v1.0.2	v2.3
QuantStudio [™] 7 Flex Real-Time PCR Instrument con firmware de instrumento v1.0.4	QuantStudio [™] Real-Time PCR Software v1.3	v2.3
Bloque de 384 pocillos		

Limitaciones del ensayo

- Este ensayo está diseñado únicamente para su uso para fines diagnósticos *in vitro*. Respete las buenas prácticas de laboratorio y todas las precauciones y directrices contenidas en estas guías para usuarios para evitar la contaminación cruzada entre muestras.
- El rendimiento del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit se ha establecido usando muestras de hisopo nasofaríngeo y orofaríngeo, aspirado nasofaríngeo y lavado broncoalveolar únicamente. Los hisopos nasales y los hisopos de cornete medio se consideran tipos de muestras aceptables según las *Directrices provisionales para la recogida, la manipulación y el análisis de muestras clínicas de personas para la enfermedad por coronavirus 2019 (COVID-19)* publicadas por los Centros de control y prevención de enfermedades, pero no se ha establecido el rendimiento del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit con estos tipos de muestras. Las pruebas de hisopos nasales y de cornete medio (autorrecogidas bajo la supervisión de o recogidas por un profesional sanitario) están limitadas a pacientes con síntomas de COVID-19. Los tipos de muestras distintos a los hisopos nasofaríngeos, orofaríngeos, nasales y de cornete medio, el aspirado nasofaríngeo y el lavado broncoalveolar no deben analizarse con este ensayo.
- Las muestras deben recogerse, transportarse y almacenarse usando los procedimientos y condiciones adecuados. La recogida, transporte o almacenamiento incorrectos de las muestras pueden dificultar la capacidad del ensayo para detectar las secuencias diana.
- Para ver las directrices para la recogida y almacenamiento de las muestras remítase a las Directrices provisionales para la recogida, la manipulación y el análisis de muestras clínicas de personas para la enfermedad por coronavirus 2019 (COVID-19) publicadas por los Centros de control y prevención de enfermedades.
- Las muestras se deberán empaquetar, enviar y transportar de acuerdo con la edición actual de la *Normativa para mercancías peligrosas de la International Air Transport Association (IATA)* (iata.org/en/programs/cargo/dgr).
- Este kit analiza muestras consistentes en ARN purificado. La calidad del ARN recuperado de las muestras biológicas es esencial para la calidad de los resultados generados con este kit.
- Los resultados falsos negativos pueden deberse a:
 - Recogida de muestras incorrecta
 - Degradación del ARN vírico durante el envío/almacenamiento
 - Recogida de muestras cuando ya no se puede encontrar ácido nucleico en la matriz de muestras
 - Uso de un método de extracción deficiente
 - Presencia de inhibidores de RT-PCR
 - Mutación del virus SARS-CoV-2
 - Incumplimiento de las instrucciones de uso

- Los resultados falsos positivos pueden deberse a:
 - Contaminación cruzada durante la manipulación o preparación de muestras
 - Contaminación cruzada entre muestras de pacientes
 - Confusión entre muestras
 - Contaminación del ARN durante la manipulación del producto
- No se han evaluado los efectos de las vacunas, terapias antivirales, antibióticos, fármacos quimioterapéuticos o inmunosupresores. El TaqPath[™] COVID-19 CE-IVD RT-PCR Kit no puede descartar enfermedades causadas por otros patógenos bacterianos o víricos.
- Los resultados negativos no excluyen la posible infección por el virus SARS-CoV-2, y no deben ser el único fundamento en la toma de una decisión sobre el tratamiento del paciente.
- Los laboratorios podrían verse obligados a notificar todos los resultados positivos a las autoridades sanitarias competentes correspondientes.

Muestras y controles

Las muestras de los pacientes se deben recoger de acuerdo con las directrices de laboratorio adecuadas. Los controles negativo y positivo se deben incluir para interpretar con precisión los resultados de la prueba del paciente.

Incluya los siguientes controles:

Control	Utilizado para controlar	Ensayos
Control positivo (TaqPath [™] COVID-19 Control Kit)	Configuración de la reacción de RT-PCR e integridad de los reactivos	Los tres ensayos para SARS-CoV-2
MS2 Phage Control	Extracción de ARN y ausencia de inhibidores en la reacción de qPCR	Ensayo de MS2
Control negativo	Contaminación cruzada durante la extracción de ARN y configuración	Los tres ensayos para SARS-CoV-2
	de la reacción	Ensayo de MS2

Flujo de trabajo

El flujo de trabajo comienza con ácido nucleico purificado a partir de muestras de las vías respiratorias superiores (como por ejemplo hisopo nasofaríngeo, orofaríngeo, nasal, de cornete medio y aspirado nasofaríngeo) y muestras de lavado broncoalveolar (LBA).

El ácido nucleico purificado se retrotranscribe a ADNc y se amplifica usando el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit y uno de los siguientes instrumentos de PCR en tiempo real:

- Applied Biosystems[™] 7500 Fast Dx Real-Time PCR instrument
- Applied Biosystems[™] 7500 Fast Real-Time PCR Instrument
- Applied Biosystems[™] 7500 Real-Time PCR Instrument
- Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instrument, bloque de 96 pocillos, 0,2 ml
- Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instrument, bloque de 96 pocillos, 0,1 ml
- Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instrument, bloque de 384 pocillos
- Applied Biosystems[™] QuantStudio[™] 5 Dx Real-Time PCR Instrument
- Applied Biosystems[™] QuantStudio[™] 7 Flex Real-Time PCR Instrument, bloque de 384 pocillos

En el proceso, las sondas hibridan con hasta tres (3) secuencias diana específicas del SARS-CoV-2. Cada diana se encuentra entre cebadores únicos directo e inverso para los siguientes genes:

- ORF1ab
- Proteína N
- Proteína S

Durante la fase de extensión del ciclo de PCR, la actividad nucleasa 5' de la polimerasa Taq degrada la sonda. Esta degradación provoca que el fluorocromo notificador se separe del fluorocromo inhibidor, generando una señal fluorescente. Con cada ciclo, otras moléculas de fluorocromo notificador se escinden de sus respectivas sondas, lo que aumenta la intensidad de la fluorescencia. El instrumento de PCR en tiempo real controla la intensidad de la fluorescencia de cada ciclo de PCR.

El Applied Biosystems[™] COVID-19 Interpretive Software analiza los datos y los interpreta.

Antes de empezar

Advertencias y precauciones

El flujo de trabajo del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit debe correr a cargo de personal formado y cualificado para evitar el riesgo de resultados erróneos. Utilice zonas separadas para la preparación de las muestras de los pacientes y los controles para evitar resultados de falso positivo. Las muestras y los reactivos se deben manipular debajo de una campana de flujo laminar o una cabina de seguridad biológica.

- Las muestras se deben tratar siempre como infecciosas y/o con riesgo biológico de acuerdo con los procedimientos de seguridad del laboratorio.
- Al manipular las muestras tome todas las precauciones necesarias. Utilice equipo de protección personal (EPI) que cumpla las directrices actuales sobre la manipulación de muestras potencialmente peligrosas.
- Utilice siempre puntas de pipeta con barrera para aerosoles. Las puntas que se usan deben ser estériles y sin ADNasas ni ARNasas.
- No coma, beba, fume ni se aplique productos cosméticos en las áreas de trabajo.
- No está permitido realizar modificaciones a los reactivos del ensayo, protocolos del ensayo o instrumentos ya que constituyen una violación de *la Directiva sobre Diagnóstico in vitro* 98/79/CE.
- No use el kit después de la fecha de caducidad.
- Deseche los residuos de conformidad con las normativas locales.
- Puede solicitar las hojas de datos de seguridad.
- Los laboratorios podrían verse obligados a notificar todos los resultados positivos a las autoridades sanitarias competentes correspondientes.

Los siguientes países requieren el marcado CE en los diagnósticos in vitro: Austria, Bélgica, Bulgaria, Croacia, Chipre, República Checa, Dinamarca, Estonia, Finlandia, Francia, Alemania, Grecia, Hungría, Irlanda, Italia, Letonia, Lituania, Luxemburgo, Malta, Países Bajos, Polonia, Portugal, Rumanía, Eslovaquia, Eslovenia, España, Suecia, Reino Unido, Noruega, Islandia, Liechtenstein, Suiza, Turquía.

- Los resultados positivos indican la presencia de ARN del SARS-CoV-2.
- Manipule todas las muestras y controles como si fueran susceptibles de transmitir agentes infecciosos.
- Los reactivos deben almacenarse y manipularse como se indica en Tabla 1.

- La calidad de la preparación de la muestra (ARN purificado) puede influir en la calidad de la prueba de qPCR. Los laboratorios solo utilizarán el método de purificación que hayan seleccionado. Los laboratorios que no tengan ningún método seleccionado pueden usar el MagMAX[™] Viral/Pathogen Nucleic Acid Isolation Kit o el MagMAX[™] Viral/Pathogen II Nucleic Acid Isolation Kit.
- El kit de qPCR incluye un control que contiene ARN de fago para verificar la eficacia de la preparación de la muestra y la ausencia de inhibidores en la reacción de PCR. Para realizar el control, añada el MS2 Phage Control a las muestras antes de la extracción del ARN, siguiendo las recomendaciones proporcionadas en Capítulo 3, "Directrices para el ARN extraído de la muestra".

Recogida, transporte y almacenamiento de las muestras

Nota: Manipule todas las muestras y controles como si fueran susceptibles de transmitir agentes infecciosos.

Directrices para el ARN extraído de la muestra

Volúmenes de partida de la muestra

Para cumplir con la necesidad de un amplio rango de volúmenes de partida de la muestra, se proporcionan 2 protocolos de RT-PCR, dependiendo del volumen de partida de la muestra.

Se analizaron los siguientes volúmenes de partida de la muestra:

- Volumen de partida bajo: 200 µl
- Volumen de partida alto: 400 µl

Los volúmenes de partida > 400 µl no se han analizado con el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit.

Se han analizado los siguientes kits de extracción de ARN:

- MagMAX[™] Viral/Pathogen Nucleic Acid Isolation Kit
- MagMAX[™] Viral/Pathogen II Nucleic Acid Isolation Kit

Directrices para la extracción de ARN

El ARN extraído se puede preparar con cualquier procedimiento de extracción de ARN estándar o kit de extracción de ARN. El volumen mínimo de elución recomendado es de 50 µl.

Las siguientes directrices son idóneas para el uso del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit.

- El MS2 Phage Control proporcionado en el kit debe usarse para verificar la eficacia de la preparación de la muestra y la ausencia de inhibidores en la reacción de RT-PCR. Se añade a la muestra antes de la extracción (consulte "Añadir MS2 Phage Control" en la página 20).
- Utilice Agua sin nucleasas (no tratada con DEPC) que contiene el MS2 Phage Control como control negativo. El control negativo purificado se utiliza como control negativo para RT-PCR.
- Recomendamos que el volumen del MS2 Phage Control sea un 2,5 % del volumen de partida de la muestra.

Añadir MS2 Phage Control

Se debe utilizar el MS2 Phage Control para verificar la eficacia de la preparación de la muestra y la ausencia de inhibidores en la reacción de RT-PCR.

Durante la extracción de ARN, añada el volumen adecuado de MS2 Phage Control a cada pocillo de la muestra y al pocillo de control negativo <u>inmediatamente antes</u> de la lisis.

Recomendamos que el volumen del MS2 Phage Control sea un 2,5 % del volumen de partida de la muestra. Se proporcionan ejemplos en la tabla que aparece a continuación:

Volumen de partida de la muestra	MS2 Phage Control volumen
200 µl	5 µl MS2 Phage Control
400 µl	10 µl MS2 Phage Control

Prepare las reacciones de RT- PCR

Directrices para la RT-PCR	21
Preparar las reacciones de RT-PCR (volumen de partida de la muestra ≤ 200 µl, placa de reacción de 96 pocillos)	22
Preparar las reacciones de RT-PCR (volumen de partida de la muestra ≤ 200 µl, placa de reacción de 384 pocillos)	24
Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 µl, placa de reacción de 96 pocillos)	27
Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 µl, placa de reacción de 384 pocillos)	29

Nota: El procedimiento usado para preparar las reacciones de RT-PCR dependerá del volumen de partida de la muestra original que se ha utilizado durante la preparación de ARN ($\leq 200 \ \mu$ l o > 200 μ l). El procedimiento usado para preparar las reacciones de RT-PCR también dependerá de si se utiliza para la RT-PCR una placa de 96 pocillos o una placa de 384 pocillos.

Directrices para la RT-PCR

¡IMPORTANTE!

- Prepare la placa del proceso en hielo y manténgala en hielo hasta que se cargue en el instrumento de PCR en tiempo real.
- Después de la preparación, ejecute inmediatamente la placa. Si no sigue las indicaciones podrían degradarse las muestras de ARN.
- Para evitar la contaminación, prepare los reactivos en una estación de trabajo de PCR o en un área sin amplicones equivalente. No use la misma pipeta de los controles para las muestras de ARN, y use siempre puntas de pipeta con barrera para aerosoles.
- Mantenga un entorno sin ARNasas.
- · Proteja los ensayos de la luz.
- Durante su uso, mantenga las muestras de ARN y los componentes en hielo.
- En cada placa de la RT-PCR, incluya los siguientes controles:
 - Un control positivo
 - · Un control negativo de cada carrera de extracción.

Por ejemplo, si las muestras de ARN de 4 procesos de extracción se combinan en una placa de RT-PCR en tiempo real de 384 pocillos, hay que procesar 4 pocillos de control negativo en esa placa de RT-PCR en tiempo real de 384 pocillos.

Preparar las reacciones de RT-PCR (volumen de partida de la muestra \leq 200 µl, placa de reacción de 96 pocillos)

Utilice este procedimiento si ha extraído el ARN de la muestra usando un volumen de partida de la muestra original de hasta 200 µl.

- 1. Si están congelados, descongele los reactivos en hielo.
- 2. Agite suavemente los reactivos y después centrifugue brevemente para recoger el líquido en el fondo del tubo.
- Diluya el TaqPath[™] COVID-19 Control (1 × 10⁴ copias/µl) a una solución de trabajo de 25 copias/µl:
 - a. Pipetee 98 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un tubo de microcentrífuga y después añada 2 µl de TaqPath[™] COVID-19 Control. Mezcle bien y después centrifugue brevemente.
 - b. Pipetee 87,5 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un segundo tubo de microcentrífuga y después añada 12,5 µl de la dilución creada en el paso secundario 3a. Mezcle bien y después centrifugue brevemente.

Nota: El TaqPath[™] COVID-19 Control no contiene la plantilla de MS2.

- 4. Prepare la mezcla de reacción:
 - a. Para cada proceso, combine los siguientes componentes, en cantidad suficiente para el número de muestras ARN a analizar más un control positivo y un control negativo.

Todos los volúmenes incluyen un excedente del 10 % para compensar el error de la pipeta.

¡IMPORTANTE! Los volúmenes de esta tabla asumen que usted extrajo ARN de muestra usando un volumen de partida de hasta 200 µl de la muestra original.

Componente	Volumen por muestra de ARN o control	Volumen para <i>n</i> muestras de ARN más 2 controles	Volumen para 94 muestras de ARN más 2 controles
TaqPath [™] 1-Step Multiplex Master Mix (No ROX [™]) (4X)	6,25 µl	6,875 x (n + 2) μl	660 µl
COVID-19 Real Time PCR Assay Multiplex	1,25 µl	1,375 x (n + 2) μl	132 µl
Agua sin nucleasas	7,50 µl	8,25 x (<i>n</i> + 2) μl	792 µl
Volumen total de la mezcla de reacción	15,0 µl	_	1584 μl

- 5. Preparación de la placa de reacción:
 - a. Pipetee 15,0 µl de la mezcla de reacción preparada en el paso 4 en cada pocillo de una MicroAmp[™] Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL o una MicroAmp[™] Optical 96-Well Reaction Plate with Barcode, 0.2 mL.

Se pueden utilizar placas sin código de barras (consulte "Materiales necesarios no suministrados" en la página 10).

- b. Agite suavemente la placa sellada con la muestra de ARN purificada y el control negativo del procedimiento de extracción de ARN y después centrifugue brevemente para recoger el líquido en el fondo de la placa.
- c. Desprecinte la placa que contiene el ARN de muestra y el control negativo purificados del procedimiento de extracción de ARN. Añada el ARN de muestra, el control negativo o el control positivo a cada pocillo de la placa de reacción según Tabla 2 en la página 24.
- d. Selle la placa por completo con MicroAmp[™] Optical Adhesive Film.

¡IMPORTANTE! Cuando aplique el MicroAmp[™] Optical Adhesive Film, asegúrese de que aplica la presión de forma homogénea por toda la placa y que se forma un sello hermético sobre cada uno de los pocillos individuales. Si no se hace esto, se corre el riesgo de que alguno de los pocillos no quede bien sellado, lo que podría permitir la contaminación entre pocillos durante el mezclado con vórtex y la PCR.

e. Agite la placa con el vórtex a velocidad máxima durante 10-30 segundos con presión media. Mueva la placa para asegurarse de que toda ella establece el mismo contacto con la plataforma del mezclador vórtex.

¡IMPORTANTE! Agite durante 10-30 segundos para garantizar una mezcla adecuada. Si no sigue estas indicaciones, las muestras podrían clasificarse incorrectamente.

23

f. Centrifugue la placa de reacción durante 1-2 minutos a $\ge 650 \times g$ (≥ 650 RCF) para eliminar las burbujas y recoger el líquido en el fondo de la placa de reacción.

Tabla 2 Placa de reacción

	Volumen por reacción		
Componente	Reacción de muestra de ARN	Reacción de control positivo	Reacción de control negativo
Mezcla de reacción	15,0 µl	15,0 µl	15,0 µl
ARN de muestra purificado (procedente de la extracción de ARN)	10,0 µl	_	_
Control positivo (TaqPath [™] COVID-19 Control diluido, procedente del paso 3)	_	2,0 µl	_
Agua sin nucleasas	_	8,0 µl	_
Control negativo purificado (procedente de la extracción de ARN)	_	_	10,0 µl
Volumen total	25,0 µl	25,0 μl	25,0 μl

Preparar las reacciones de RT-PCR (volumen de partida de la muestra \leq 200 µl, placa de reacción de 384 pocillos)

Utilice este procedimiento si ha extraído el ARN de la muestra usando un volumen de partida de la muestra original de hasta 200 µl y está usando el Applied Biosystems[™] QuantStudio[™] 7 Flex Real-Time PCR Instrument con un bloque de 384 pocillos.

- 1. Si están congelados, descongele los reactivos en hielo.
- 2. Agite suavemente los reactivos y después centrifugue brevemente para recoger el líquido en el fondo del tubo.
- Diluya el TaqPath[™] COVID-19 Control (1 × 10⁴ copias/µl) a una solución de trabajo de 25 copias/µl:
 - a. Pipetee 98 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un tubo de microcentrífuga y después añada 2 µl de TaqPath[™] COVID-19 Control. Mezcle bien y después centrifugue brevemente.
 - b. Pipetee 87,5 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un segundo tubo de microcentrífuga y después añada 12,5 µl de la dilución creada en el paso secundario 3a. Mezcle bien y después centrifugue brevemente.

Nota: El TaqPath[™] COVID-19 Control no contiene la plantilla de MS2.

- 4. Prepare la mezcla de reacción.
 - a. Para cada proceso, combine los siguientes componentes en cantidad suficiente para el número de muestras de ARN, más un control positivo por placa de RT-PCR en tiempo real de 384 pocillos y un control negativo por cada proceso de extracción.

Por ejemplo, si las muestras de ARN de 4 procesos de extracción se combinan en una placa de RT-PCR en tiempo real de 384 pocillos, hay que procesar 4 pocillos de control negativo en esa placa de RT-PCR en tiempo real de 384 pocillos.

Todos los volúmenes incluyen un excedente del 10 % para compensar el error de la pipeta.

¡IMPORTANTE! Los volúmenes de esta tabla asumen que usted extrajo ARN de muestra usando un volumen de partida de hasta 200 µl de la muestra original.

Componente	Volumen por muestra de ARN o control	Volumen para <i>n</i> muestras de ARN más <i>y</i> controles negativos más 1 control positivo	Volumen para 379 muestras de ARN más 4 controles negativos más 1 control positivo
TaqPath [™] 1-Step Multiplex Master Mix (No ROX [™]) (4X)	5,00 µl	5,50 x (<i>n</i> + <i>y</i> + 1) μl	2112,0 µl
COVID-19 Real Time PCR Assay Multiplex	1,00 µl	1,10 x (<i>n</i> + <i>y</i> + 1) µl	422,4 µl
Agua sin nucleasas	4,00 µl	4,40 x (<i>n</i> + <i>y</i> + 1) μl	1690,0 µl
Volumen total de la mezcla de reacción	10,0 µl	-	4224,4 µl

5. Preparación de la placa de reacción:

- a. Pipetee 10,0 µl de la mezcla de reacción preparada en el paso 4 en cada pocillo de una MicroAmp[™] Optical 384-Well Reaction Plate with Barcode. Se pueden utilizar placas sin código de barras (consulte "Materiales necesarios no suministrados" en la página 10).
- b. Agite suavemente la placa sellada con la muestra de ARN purificada y el control negativo del procedimiento de extracción de ARN y después centrifugue brevemente para recoger el líquido en el fondo de la placa.
- c. Desprecinte la placa que contiene el ARN de muestra y el control negativo purificados del procedimiento de extracción de ARN. Añada el ARN de muestra, el control negativo o el control positivo a cada pocillo de la placa de reacción según Tabla 3 en la página 26.

¡IMPORTANTE! Para evitar que las muestras se contaminen, desprecinte una sola placa de extracción y vuelva a precintarla después de añadir las muestras a la placa de reacción RT-PCR. d. Selle la placa por completo con MicroAmp[™] Optical Adhesive Film.

¡IMPORTANTE! Cuando aplique el MicroAmp[™] Optical Adhesive Film, asegúrese de que aplica la presión de forma homogénea por toda la placa y que se forma un sello hermético sobre cada uno de los pocillos individuales. Si no se hace esto, se corre el riesgo de que alguno de los pocillos no quede bien sellado, lo que podría permitir la contaminación entre pocillos durante el mezclado con vórtex y la PCR.

e. Agite la placa con el vórtex a velocidad máxima durante 10-30 segundos con presión media. Mueva la placa para asegurarse de que toda ella establece el mismo contacto con la plataforma del mezclador vórtex.

¡IMPORTANTE! Agite durante 10–30 segundos para garantizar una mezcla adecuada. Si no sigue estas indicaciones, las muestras podrían clasificarse incorrectamente.

f. Centrifugue la placa de reacción durante 1-2 minutos a $\ge 650 \times g$ (≥ 650 RCF) para eliminar las burbujas y recoger el líquido en el fondo de la placa de reacción.

	Volumen por reacción		
Componente	Reacción de muestra de ARN	Reacción de control positivo	Reacción de control negativo
Mezcla de reacción	10,0 µl	10,0 µl	10,0 µl
ARN de muestra purificado (procedente de la extracción de ARN)	10,0 µl	_	_
Control positivo (TaqPath [™] COVID-19 Control diluido, procedente del paso 3)	_	2,0 µl	_
Agua sin nucleasas	_	8,0 µl	_
Control negativo purificado (procedente de la extracción de ARN)	_	_	10,0 µl
Volumen total	20,0 µl	20,0 µl	20,0 µl

Tabla 3 Placa de reacción

Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 μ l, placa de reacción de 96 pocillos)

Utilice este procedimiento si ha extraído el ARN de la muestra usando un volumen de partida de la muestra original entre 201 μ l y 400 μ l. Un volumen de partida de la muestra > 400 μ l no se ha probado con el TaqPathTM COVID-19 CE-IVD RT-PCR Kit.

- 1. Si están congelados, descongele los reactivos en hielo.
- 2. Agite suavemente los reactivos y después centrifugue brevemente para recoger el líquido en el fondo del tubo.
- Diluya el TaqPath[™] COVID-19 Control (1 × 10⁴ copias/µl) a una solución de trabajo de 25 copias/µl:
 - a. Pipetee 98 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un tubo de microcentrífuga y después añada 2 µl de TaqPath[™] COVID-19 Control. Mezcle bien y después centrifugue brevemente.
 - b. Pipetee 87,5 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un segundo tubo de microcentrífuga y después añada 12,5 µl de la dilución creada en el paso secundario 3a. Mezcle bien y después centrifugue brevemente.

Nota: El TaqPath[™] COVID-19 Control no contiene la plantilla de MS2.

- 4. Prepare la mezcla de reacción:
 - a. Para cada proceso, combine los siguientes componentes, en cantidad suficiente para el número de muestras ARN a analizar más un control positivo y un control negativo.

Todos los volúmenes incluyen un excedente del 10 % para compensar el error de la pipeta.

¡IMPORTANTE! Los volúmenes de esta tabla asumen que usted extrajo ARN de muestra usando un volumen de partida de entre 201 µl y 400 µl de la muestra original.

Componente	Volumen por muestra de ARN o control	Volumen para <i>n</i> muestras de ARN más 2 controles	Volumen para 94 muestras de ARN más 2 controles
TaqPath [™] 1-Step Multiplex Master Mix (No ROX [™]) (4X)	6,25 µl	6,875 x (n + 2) μl	660 µl
COVID-19 Real Time PCR Assay Multiplex	1,25 µl	1,375 x (<i>n</i> + 2) μl	132 µl
Agua sin nucleasas	12,50 µl	13,75 x (n + 2) μl	1320 µl
Volumen total de la mezcla de reacción	20,0 µl	-	2112 µl

- 5. Preparación de la placa de reacción:
 - a. Pipetee 20,0 µl de la mezcla de reacción preparada en el paso 4 en cada pocillo de una MicroAmp[™] Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL o una MicroAmp[™] Optical 96-Well Reaction Plate with Barcode, 0.2 mL.

Se pueden utilizar placas sin código de barras (consulte "Materiales necesarios no suministrados" en la página 10).

- b. Agite suavemente la placa sellada con la muestra de ARN purificada y el control negativo del procedimiento de extracción de ARN y después centrifugue brevemente para recoger el líquido en el fondo de la placa.
- c. Desprecinte la placa que contiene el ARN de muestra y el control negativo purificados del procedimiento de extracción de ARN. Añada el ARN de muestra, el control negativo o el control positivo a cada pocillo de la placa de reacción según Tabla 4 en la página 29.
- d. Selle la placa por completo con MicroAmp[™] Optical Adhesive Film.

¡IMPORTANTE! Cuando aplique el MicroAmp[™] Optical Adhesive Film, asegúrese de que aplica la presión de forma homogénea por toda la placa y que se forma un sello hermético sobre cada uno de los pocillos individuales. Si no se hace esto, se corre el riesgo de que alguno de los pocillos no quede bien sellado, lo que podría permitir la contaminación entre pocillos durante el mezclado con vórtex y la PCR.

e. Agite la placa con el vórtex a velocidad máxima durante 10-30 segundos con presión media. Mueva la placa para asegurarse de que toda ella establece el mismo contacto con la plataforma del mezclador vórtex.

¡IMPORTANTE! Agite durante 10–30 segundos para garantizar una mezcla adecuada. Si no sigue estas indicaciones, las muestras podrían clasificarse incorrectamente.

f. Centrifugue la placa de reacción durante 1-2 minutos a $\ge 650 \times g$ (≥ 650 RCF) para eliminar las burbujas y recoger el líquido en el fondo de la placa de reacción.

Tabla 4 Placa de reacción

	Volumen por reacción		
Componente	Reacción de muestra de ARN	Reacción de control positivo	Reacción de control negativo
Mezcla de reacción	20,0 µl	20,0 µl	20,0 µl
ARN de muestra purificado (procedente de la extracción de ARN)	5,0 µl	_	_
Control positivo (TaqPath [™] COVID-19 Control diluido, procedente del paso 3)	_	2,0 µl	_
Agua sin nucleasas	_	3,0 µl	_
Control negativo purificado (procedente de la extracción de ARN)	_	_	5,0 µl
Volumen total	25,0 µl	25,0 µl	25,0 µl

Preparar las reacciones de RT-PCR (volumen de partida de la muestra > 200 μ l, placa de reacción de 384 pocillos)

Utilice este procedimiento si ha extraído el ARN de la muestra usando un volumen de partida de la muestra original entre 201 µl y 400 µl y está usando el Applied Biosystems[™] QuantStudio[™] 7 Flex Real-Time PCR Instrument con un bloque de 384 pocillos. Un volumen de partida de la muestra > 400 µl no se ha probado con el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit.

- 1. Si están congelados, descongele los reactivos en hielo.
- 2. Agite suavemente los reactivos y después centrifugue brevemente para recoger el líquido en el fondo del tubo.
- Diluya el TaqPath[™] COVID-19 Control (1 × 10⁴ copias/µl) a una solución de trabajo de 25 copias/µl:
 - a. Pipetee 98 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un tubo de microcentrífuga y después añada 2 µl de TaqPath[™] COVID-19 Control. Mezcle bien y después centrifugue brevemente.
 - b. Pipetee 87,5 µl de TaqPath[™] COVID-19 Control Dilution Buffer en un segundo tubo de microcentrífuga y después añada 12,5 µl de la dilución creada en el paso secundario 3a. Mezcle bien y después centrifugue brevemente.

Nota: El TaqPath[™] COVID-19 Control no contiene la plantilla de MS2.

- 4. Prepare la mezcla de reacción.
 - a. Para cada proceso, combine los siguientes componentes en cantidad suficiente para el número de muestras de ARN, más un control positivo por placa de RT-PCR en tiempo real de 384 pocillos y un control negativo por cada proceso de extracción.

Por ejemplo, si las muestras de ARN de 4 procesos de extracción se combinan en una placa de RT-PCR en tiempo real de 384 pocillos, hay que procesar 4 pocillos de control negativo en esa placa de RT-PCR en tiempo real de 384 pocillos.

Todos los volúmenes incluyen un excedente del 10 % para compensar el error de la pipeta.

¡IMPORTANTE! Los volúmenes de esta tabla asumen que usted extrajo ARN de muestra usando un volumen de partida de entre 201 µl y 400 µl de la muestra original.

Componente	Volumen por muestra de ARN o control	Volumen para <i>n</i> muestras de ARN más <i>y</i> controles negativos más 1 control positivo	Volumen para 379 muestras de ARN más 4 controles negativos más 1 control positivo
TaqPath [™] 1-Step Multiplex Master Mix (No ROX [™]) (4X)	5,00 µl	5,50 x (<i>n</i> + <i>y</i> + 1) µl	2112,0 µl
COVID-19 Real Time PCR Assay Multiplex	1,00 µl	1,10 x (<i>n</i> + <i>y</i> + 1) µl	422,4 μl
Agua sin nucleasas	9,00 µl	9,90 x (<i>n</i> + <i>y</i> + 1) μl	3802,0 µl
Volumen total de la mezcla de reacción	15,0 µl	_	6336,4 μl

- 5. Preparación de la placa de reacción:
 - a. Pipetee 15,0 µl de la mezcla de reacción preparada en el paso 4 en cada pocillo de una MicroAmp[™] Optical 384-Well Reaction Plate with Barcode.
 Se pueden utilizar placas sin código de barras (consulte "Materiales
 - necesarios no suministrados" en la página 10).
 - b. Agite suavemente la placa sellada con la muestra de ARN purificada y el control negativo del procedimiento de extracción de ARN y después centrifugue brevemente para recoger el líquido en el fondo de la placa.

c. Desprecinte la placa que contiene el ARN de muestra y el control negativo purificados del procedimiento de extracción de ARN. Añada el ARN de muestra, el control negativo o el control positivo a cada pocillo de la placa de reacción según Tabla 5 en la página 31.

¡IMPORTANTE! Para evitar que las muestras se contaminen, desprecinte una sola placa de extracción y vuelva a precintarla después de añadir las muestras a la placa de reacción RT-PCR.

d. Selle la placa por completo con MicroAmp[™] Optical Adhesive Film.

¡IMPORTANTE! Cuando aplique el MicroAmp[™] Optical Adhesive Film, asegúrese de que aplica la presión de forma homogénea por toda la placa y que se forma un sello hermético sobre cada uno de los pocillos individuales. Si no se hace esto, se corre el riesgo de que alguno de los pocillos no quede bien sellado, lo que podría permitir la contaminación entre pocillos durante el mezclado con vórtex y la PCR.

e. Agite la placa con el vórtex a velocidad máxima durante 10-30 segundos con presión media. Mueva la placa para asegurarse de que toda ella establece el mismo contacto con la plataforma del mezclador vórtex.

¡IMPORTANTE! Agite durante 10-30 segundos para garantizar una mezcla adecuada. Si no sigue estas indicaciones, las muestras podrían clasificarse incorrectamente.

f. Centrifugue la placa de reacción durante 1-2 minutos a $\ge 650 \times g$ (≥ 650 RCF) para eliminar las burbujas y recoger el líquido en el fondo de la placa de reacción.

	Volumen por reacción		
Componente	Reacción de muestra de ARN	Reacción de control positivo	Reacción de control negativo
Mezcla de reacción	15,0 µl	15,0 µl	15,0 µl
ARN de muestra purificado (procedente de la extracción de ARN)	5,0 µl	_	_
Control positivo (TaqPath [™] COVID-19 Control diluido, procedente del paso 3)	_	2,0 µl	_
Agua sin nucleasas	_	3,0 µl	_
Control negativo purificado (procedente de la extracción de ARN)	_	_	5,0 µl
Volumen total	20,0 µl	20,0 µl	20,0 µl

Tabla 5 Placa de reacción

Realice la RT-PCR usando el Applied Biosystems[™] 7500 Fast Dx Real-Time PCR Instrument

- Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series . 32
- Configurar y ejecutar el 7500 Fast Dx Real-Time PCR Instrument 33

Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series

Un instrumento existente estará calibrado para muchos fluorocromos. Además de esos fluorocromos, el operador del instrumento debe calibrar el instrumento para el fluorocromo ABY[™] y el fluorocromo JUN[™] que se utilizan en este kit. Para todos los demás ensayos, consulte el proceso de calibración estándar.

Transfiera el archivo de la plantilla (archivo SDT) para el 7500 Fast Dx Real-Time PCR Instrument

El archivo de la plantilla (archivo SDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™]

COVID-19 Interpretive Software y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el SDS Software v1.4.1.

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo SDT:

TaqPath COVID-19 Kit Template 7500fastDx sds1_4_1 v1-2.sdt

3. Transfiera el archivo SDT al ordenador que tiene el SDS Software v1.4.1, usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo SDT apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el 7500 Fast Dx Real-Time PCR Instrument

Para obtener más información sobre el 7500 Fast Dx Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

 Usando el SDS Software v1.4.1, abra el archivo SDT que ha transferido en el "Transfiera el archivo de la plantilla (archivo SDT) para el 7500 Fast Dx Real-Time PCR Instrument" en la página 32.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

- 2. Confirme la configuración de la carrera en la plantilla y ajústela según sea necesario.
 - Assay (Ensayo): Standard Curve (Absolute Quantitation) (Curva estándar [cuantificación absoluta])
 - Run mode (Modo de ejecución): Standard 7500 (Estándar 7500)
 - Passive reference (Referencia pasiva): None (Ninguna)
 - Sample volume (Volumen de muestra): 25 µl

[IMPORTANTE! La referencia pasiva debe ajustarse a None (Ninguna).

 Confirme que el fluorocromo notificador y los pares de detectores están conectados en el Detector Manager (Gestor de detectores) en el menú Tools (Herramientas).

Fluorocromo notificador	Detector
FAM	ORF1ab
VIC	Gen N
ABY	Gen S
JUN	MS2

- 4. Confirme que las dianas anteriores están asignadas a cada pocillo en la disposición de la placa.
- 5. Confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo y un control negativo asignado a unos pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.
- 6. En los pocillos con un control positivo, confirme que **Task (Tarea)** está ajustada a **Standard (Estándar)**.
- 7. En los pocillos con un control negativo, confirme que **Task (Tarea)** está ajustada a **NTC (sin ácido nucleico molde)**.
- 8. Edite la disposición de la placa asignando un nombre de muestra único a cada pocillo de la placa física.

En los pocillos con una muestra de paciente, confirme que **Task (Tarea)** está ajustada a **Unknown (Desconocida)** en todos los detectores.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

9. Confirmar el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

10. Haga clic en Save As (Guardar como), introduzca un nombre de archivo y después haga clic en Save (Guardar).

- **11.** Vuelva a abrir el archivo para conectar el ordenador al instrumento, cargue la placa y después inicie el proceso en el instrumento de PCR en tiempo real.
- **12.** Una vez finalizada la carrera del instrumento, abra el archivo SDS en el SDS Software v1.4.1. Analice y después guarde el archivo.

Realice la RT-PCR usando el Applied Biosystems[™] 7500 Fast Real-Time PCR Instrument

Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series . 36

Transfiera la plantilla (archivo SDT o EDT) para el 7500 Fast Real-Time PCR Instrument	37
Configurar y ejecutar el 7500 Fast Real-Time PCR Instrument (SDS Software v1.5.1)	37
Configurar y ejecutar el 7500 Fast Real-Time PCR Instrument (7500 Software v2.3)	39

Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series

Un instrumento existente estará calibrado para muchos fluorocromos. Además de esos fluorocromos, el operador del instrumento debe calibrar el instrumento para el fluorocromo ABY[™] y el fluorocromo JUN[™] que se utilizan en este kit. Para todos los demás ensayos, consulte el proceso de calibración estándar.
Transfiera la plantilla (archivo SDT o EDT) para el 7500 Fast Real-Time PCR Instrument

El archivo de la plantilla (archivo SDT o EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el software de recogida de datos del instrumento.

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo SDT o EDT apropiado para la versión del software de instrumento que está utilizando:

Versión del software de recogida de datos	Archivo de plantilla
SDS Software v1.5.1	TaqPath COVID-19 Kit Template 7500fast sds1_5_1 v1-2.sdt
7500 Software v2.3	TaqPath COVID-19 Kit Template 7500fast sds2_3 v1-2.edt

3. Transfiera el archivo SDT o EDT apropiado al ordenador que tiene el software de recogida de datos, usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo SDT o EDT apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el 7500 Fast Real-Time PCR Instrument (SDS Software v1.5.1)

Este procedimiento es específico para el 7500 Fast Real-Time PCR Instrument con el SDS Software v1.5.1. Para obtener más información, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- 1. Usando el SDS Software v1.5.1, acceda al archivo de plantilla apropiado.
 - a. Cree un nuevo experimento.
 - b. En el campo Template (Plantilla), navegue hasta el archivo SDT que ha transferido en el "Transfiera la plantilla (archivo SDT o EDT) para el 7500 Fast Real-Time PCR Instrument" en la página 37 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

- 2. Confirme la configuración de la carrera en la plantilla y ajústela según sea necesario.
 - Assay (Ensayo): Standard Curve (Absolute Quantitation) (Curva estándar [cuantificación absoluta])
 - Run mode (Modo de ejecución): Standard 7500 (Estándar 7500)
 - Passive reference (Referencia pasiva): None (Ninguna)
 - Sample volume (Volumen de muestra): 25 µl

¡IMPORTANTE! La referencia pasiva debe ajustarse a None (Ninguna).

 Confirme que el fluorocromo notificador y los pares de detectores están conectados en el Detector Manager (Gestor de detectores) en el menú Tools (Herramientas).

Fluorocromo notificador	Detector
FAM	ORF1ab
VIC	Gen N
ABY	Gen S
JUN	MS2

- 4. Confirme que las dianas anteriores están asignadas a cada pocillo en la disposición de la placa.
- 5. Confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.
- 6. En los pocillos con un control positivo, confirme que **Task (Tarea)** está ajustada a **Standard (Estándar)**.
- 7. En los pocillos con un control negativo, confirme que **Task (Tarea)** está ajustada a **NTC (sin ácido nucleico molde)**.
- 8. Edite la disposición de la placa asignando un nombre de muestra único a cada pocillo de la placa física.

En los pocillos con una muestra de paciente, asegúrese de que **Task (Tarea)** está ajustada a **Unknown (Desconocida)** en todos los detectores.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

9. Confirmar el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 10. Haga clic en Save As (Guardar como), introduzca un nombre de archivo y después haga clic en Save (Guardar).
- **11.** Vuelva a abrir el archivo, cargue la placa y después inicie la carrera en el instrumento.
- **12.** Una vez finalizada la carrera del instrumento, abra el archivo SDS en el SDS Software v1.5.1. Analice y después guarde el archivo.

Configurar y ejecutar el 7500 Fast Real-Time PCR Instrument (7500 Software v2.3)

Este procedimiento es específico para el 7500 Fast Real-Time PCR Instrument con el 7500 Software v2.3. Para obtener más información, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- 1. En la página de inicio del 7500 Software v2.3, haga clic en Template (Plantilla).
- Navegue hasta el archivo SDT o EDT que haya transferido en el "Transfiera la plantilla (archivo SDT o EDT) para el 7500 Fast Real-Time PCR Instrument" en la página 37 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

- En la ventana Experiment Properties (Propiedades del experimento), introduzca o confirme la siguiente información:
 - Experiment name (Nombre del experimento): Introduzca un nombre único
 - Instrument type (Tipo de instrumento): 7500 Fast (96 wells) (7500 Fast [96 pocillos])
 - Type of experiment (Tipo de experimento): Quantitation Standard Curve (Cuantificación: curva estándar)
 - Reagents (Reactivos): TaqMan[™]
 - Ramp Speed (Velocidad de la rampa): Standard (Estándar)
- 4. En la ventana Plate Setup (Configuración de la placa), en la pestaña Define Targets and Samples (Definir dianas y muestras), en el panel Define Targets (Definir dianas), confirme que las dianas, fluorocromos notificadores e inhibidores están incluidos correctamente.

Diana	Fluorocromo notificador	Inhibidor
ORF1ab	FAM	Ninguno
Gen N	VIC	Ninguno
Gen S	ABY	Ninguno
MS2	JUN	Ninguno

- 5. En la ventana Plate Setup (Configuración de la placa), en la pestaña Define Targets and Samples (Definir dianas y muestras) y en el panel Define Samples (Definir muestras), confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.

Para incluir controles adicionales, seleccione Add New Sample (Añadir nueva muestra).

- 6. Seleccione Add New Sample (Añadir nueva muestra) para asignar un nombre de muestra único a cada pocillo de la placa física.
- En la ventana Plate Setup (Configuración de la placa), en la pestaña Assign Targets and Samples (Asignar dianas y muestras), confirme que hay cuatro dianas asignadas a cada pocillo en la disposición de la placa. Para asignar una diana o muestra a un pocillo, seleccione el pocillo, después marque la casilla de verificación Assign (Asignar).

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

8. En los pocillos con un control positivo, confirme que Task (Tarea) está ajustada a S (E) de Standard (Estándar).

- 9. En los pocillos con un control negativo, confirme que **Task (Tarea)** está ajustada a **N** de Negative (Negativo).
- 10. En los pocillos con una muestra de paciente, confirme que **Task (Tarea)** está ajustada a **U (D)** de Unknown (Desconocido).
- 11. Confirme que **Passive Reference (Referencia pasiva)** está ajustada a **None** (Ninguna).
- **12.** En la ventana **Run Method (Método de carrera)**, confirme que **Reaction Volume Per Well (Volumen de reacción por pocillo)** es 25 μl y después confirme el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 13. Seleccione Start Run (Iniciar carrera), introduzca un nombre de fichero y después haga clic en Save (Guardar).
- 14. Después de que la carrera del instrumento finalice, haga clic en Analyze (Analizar) y después guarde el archivo.

Realice la RT-PCR usando el Applied Biosystems[™] 7500 Real-Time PCR Instrument

	Calibración del fluorocromo	para la 7500 Real-Time PCR Instrument series . 4	12
--	-----------------------------	--	----

Transfiera el archivo de la plantilla (archivo EDT) para el 7500 Real-Time PCR Instrument	43
Configurar y ejecutar el 7500 Real-Time PCR Instrument (7500 Software v2.3)	43

Calibración del fluorocromo para la 7500 Real-Time PCR Instrument series

Un instrumento existente estará calibrado para muchos fluorocromos. Además de esos fluorocromos, el operador del instrumento debe calibrar el instrumento para el fluorocromo ABY[™] y el fluorocromo JUN[™] que se utilizan en este kit. Para todos los demás ensayos, consulte el proceso de calibración estándar.

¡IMPORTANTE! Use solo las placas de calibración que figuran en "Materiales necesarios no suministrados" en la página 10.

Transfiera el archivo de la plantilla (archivo EDT) para el 7500 Real-Time PCR Instrument

El archivo de la plantilla (archivo EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el 7500 Software v2.3.

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo EDT:

TaqPath COVID-19 Kit Template 7500std sds2_3 v1-2.edt

3. Transfiera el archivo EDT al ordenador que tiene el software de recogida de datos, usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el 7500 Real-Time PCR Instrument (7500 Software v2.3)

Este procedimiento es específico para el 7500 Real-Time PCR Instrument con el 7500 Software v2.3. Para obtener más información, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- 1. En la página de inicio del 7500 Software v2.3, haga clic en Template (Plantilla).
- 2. Navegue hasta el archivo de plantilla que ha transferido en el "Transfiera el archivo de la plantilla (archivo EDT) para el 7500 Real-Time PCR Instrument" en la página 43 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

- **3.** En la ventana **Experiment Properties (Propiedades del experimento)**, introduzca o confirme la siguiente información:
 - Experiment name (Nombre del experimento): Introduzca un nombre único
 - Instrument type (Tipo de instrumento): 7500 (96 wells) (7500 [96 pocillos])
 - Type of experiment (Tipo de experimento): Quantitation Standard Curve (Cuantificación: curva estándar)
 - Reagents (Reactivos): TaqMan[™]
 - Ramp Speed (Velocidad de la rampa): Standard (Estándar)
- 4. En la ventana Plate Setup (Configuración de la placa), en la pestaña Define Targets and Samples (Definir dianas y muestras), en el panel Define Targets (Definir dianas), confirme que las dianas, fluorocromos notificadores e inhibidores están incluidos correctamente.

Diana	Fluorocromo notificador	Inhibidor
ORF1ab	FAM	Ninguno
Gen N	VIC	Ninguno
Gen S	ABY	Ninguno
MS2	JUN	Ninguno

- En la ventana Plate Setup (Configuración de la placa), en la pestaña Define Targets and Samples (Definir dianas y muestras) y en el panel Define Samples (Definir muestras), confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.

Para incluir controles adicionales, seleccione Add New Sample (Añadir nueva muestra).

- 6. Seleccione Add New Sample (Añadir nueva muestra) para asignar un nombre de muestra único a cada pocillo de la placa física.
- 7. En la ventana Plate Setup (Configuración de la placa), en la pestaña Assign Targets and Samples (Asignar dianas y muestras), confirme que hay cuatro dianas asignadas a cada pocillo en la disposición de la placa. Para asignar una diana o muestra a un pocillo, seleccione el pocillo, después marque la casilla de verificación Assign (Asignar).

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

8. En los pocillos con un control positivo, confirme que **Task (Tarea)** está ajustada a **S (E)** de Standard (Estándar).

- En los pocillos con un control negativo, confirme que Task (Tarea) está ajustada a N de Negative (Negativo).
- 10. En los pocillos con una muestra de paciente, confirme que **Task (Tarea)** está ajustada a **U (D)** de Unknown (Desconocido).
- 11. Confirme que **Passive Reference (Referencia pasiva)** está ajustada a **None** (Ninguna).
- **12.** En la ventana **Run Method (Método de carrera)**, confirme que **Reaction Volume Per Well (Volumen de reacción por pocillo)** es 25 μl y después confirme el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 13. Seleccione Start Run (Iniciar carrera), introduzca un nombre de fichero y después haga clic en Save (Guardar).
- 14. Después de que la carrera del instrumento finalice, haga clic en Analyze (Analizar) y después guarde el archivo.

Realice la RT-PCR usando el Applied Biosystems[™] QuantStudio[™] 5 Real-Time PCR Instrument

	Calibración del fluorocromo para la QuantStudio [™] 5 Real-Time PCR Instrument	46
	Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio [™] 5 Real-Time PCR Instrument	47
	Configurar y ejecutar el QuantStudio [™] 5 Real-Time PCR Instrument (placas de 96 pocillos)	48
•	Configurar y ejecutar el QuantStudio [™] 5 Real-Time PCR Instrument (placas de 384 pocillos)	50

Calibración del fluorocromo para la QuantStudio[™] 5 Real-Time PCR Instrument

Un instrumento existente estará calibrado para todos los fluorocromos que se utilizan en este kit. Asegúrese de que las calibraciones para el fluorocromo FAM[™], fluorocromo VIC[™], fluorocromo ABY[™] y fluorocromo JUN[™] sean actuales. Si fuera necesario realizar una calibración, consulte el proceso de calibración estándar en la guía de usuario del instrumento.

Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Real-Time PCR Instrument

El archivo de la plantilla (archivo EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el QuantStudio[™] Design and Analysis Desktop Software v1.5.1.

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo EDT apropiado para su instrumento.

Instrumento	Archivo de plantilla		
QuantStudio [™] 5 Real-Time PCR Instrument (bloque de 96 pocillos, 0,1 ml)	TaqPath COVID-19 Kit Template QS5 0_1ml_da1_5_1 v2-2.edt		
QuantStudio [™] 5 Real-Time PCR Instrument (bloque de 96 pocillos, 0,2 ml)	TaqPath COVID-19 Kit Template QS5 0_2ml_da1_5_1 v2-2.edt		
QuantStudio [™] 5 Real-Time PCR Instrument (bloque de 384 pocillos)	TaqPath COVID-19 Kit Template QS5 384_da1_5_1 v2-2.edt		

3. Transfiera el archivo EDT al ordenador que tiene el QuantStudio[™] Design and Analysis Desktop Software v1.5.1, usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo EDT apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el QuantStudio[™] 5 Real-Time PCR Instrument (placas de 96 pocillos)

Para obtener más información sobre el QuantStudio[™] 5 Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- En el QuantStudio[™] Design and Analysis Desktop Software v1.5.1, en la casilla New Experiment (Nuevo experimento), seleccione Create New Experiment (Crear nuevo experimento) → Template (Plantilla).
- Navegue hasta el archivo EDT que ha transferido en "Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Real-Time PCR Instrument" en la página 47 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

- 3. En la pestaña Properties (Propiedades), introduzca o confirme lo siguiente.
 - Name (Nombre): Introduzca un nombre único
 - Instrument type (Tipo de instrumento): QuantStudio[™] 5 System
 - Block type (Tipo de bloque): 96-Well 0.2-mL Block (Bloque de 96 pocillos de 0,2 ml) o 96-Well 0.1-mL Block (Bloque de 96 pocillos de 0,1 ml)
 - Experiment type (Tipo de experimento): Standard Curve (Curva estándar)
 - Chemistry (Química): TaqMan[™] Reagents (Reactivos TaqMan[™])
 - Run Mode (Modo de ejecución): Standard (Estándar)
- **4.** En la pestaña **Method (Método)**, confirme que el **Volume (Volumen)** es de 25 μl, después confirme el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 5. En la pestaña Plate (Placa), haga clic en Quick Setup (Configuración rápida).
- 6. En el panel Plate Attributes (Atributos de la placa), confirme que Passive Reference (Referencia pasiva) está ajustada a None (Ninguna).

7. En la pestaña Plate (Placa), haga clic en Advanced Setup (Configuración avanzada).

8. En la tabla **Targets (Dianas)**, confirme que el fluorocromo notificador y las parejas diana son correctas).

Fluorocromo notificador	Detector	Inhibidor
FAM	ORF1ab	Ninguno
VIC	Gen N	Ninguno
ABY	Gen S	Ninguno
JUN	MS2	Ninguno

- **9.** Confirme que las dianas anteriores están asignadas a cada pocillo en la disposición de la placa.
- **10.** En el panel de disposición de la placa, confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.
- 11. Confirme que **Task (Tarea)** está ajustada a **S (Standard) (Estándar)** para todas las dianas del pocillo de control positivo.
- 12. Confirme que **Task (Tarea)** está ajustada a **N (Control negativo)** para todas las dianas del pocillo de control negativo.
- 13. En la tabla Samples (Muestras), haga clic en Add (Añadir) para establecer los nombres de las muestras. Cree un nombre de muestra único para cada pocillo de la placa física.
- 14. Para asignar una muestra a un pocillo, seleccione el pocillo en la disposición de la placa y después seleccione la muestra en la tabla **Samples (Muestras)**.

Confirme que **Task (Tarea)** está ajustada a **U (Unknown) (Desconocida)** para todas las dianas de los pocillos de muestras de paciente.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

- 15. En la pestaña **Run (Carrera)**, haga clic en **Start Run (Iniciar carrera)** y después seleccione el instrumento de la lista desplegable.
- **16.** Introduzca un nombre de archivo en el cuadro de diálogo que le pide que guarde el archivo del proceso y después guarde el archivo.

TaqPath[™] COVID-19 CE-IVD RT-PCR Kit Instrucciones de uso

Configurar y ejecutar el QuantStudio[™] 5 Real-Time PCR Instrument (placas de 384 pocillos)

Para obtener más información sobre el QuantStudio[™] 5 Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- En el QuantStudio[™] Design and Analysis Desktop Software v1.5.1, en la casilla New Experiment (Nuevo experimento), seleccione Create New Experiment (Crear nuevo experimento) → Template (Plantilla).
- Navegue hasta el archivo EDT que ha transferido en "Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Real-Time PCR Instrument" en la página 47 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

- 3. En la pestaña Properties (Propiedades), introduzca o confirme lo siguiente.
 - Name (Nombre): Introduzca un nombre
 - Instrument type (Tipo de instrumento): QuantStudio[™] 5 System
 - Block type (Tipo de bloque): 384-well Block (Bloque de 384 pocillos)
 - Experiment type (Tipo de experimento): Standard Curve (Curva estándar)
 - Chemistry (Química): TaqMan[™] Reagents (Reactivos TaqMan[™])
 - Run Mode (Modo de ejecución): Standard (Estándar)
- **4.** En la pestaña **Method (Método)**, confirme que el **Volume (Volumen)** es de 20 μl, después confirme el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 5. En la pestaña Plate (Placa), haga clic en Quick Setup (Configuración rápida).
- 6. En el panel Plate Attributes (Atributos de la placa), confirme que Passive Reference (Referencia pasiva) está ajustada a None (Ninguna).

7. En la pestaña Plate (Placa), haga clic en Advanced Setup (Configuración avanzada).

8. En la tabla **Targets (Dianas)**, confirme que el fluorocromo notificador y las parejas diana son correctas).

Fluorocromo notificador	Detector	Inhibidor
FAM	ORF1ab	Ninguno
VIC	Gen N	Ninguno
ABY	Gen S	Ninguno
JUN	MS2	Ninguno

- **9.** Confirme que las dianas anteriores están asignadas a cada pocillo en la disposición de la placa.
- **10.** En el panel de disposición de la placa, confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.

Nota: Si las muestras de más de una carrera de extracción de ARN se incluyen en la misma placa de RT-PCR de 384 pocillos, debe haber un control negativo para cada carrera de extracción de ARN incluida en la placa de RT-PCR de 384 pocillos (consulte "Directrices para la RT-PCR" en la página 21). Etiquete cada control negativo con un nombre único, por ejemplo, *NC1*, *NC2*, *NC3* y *NC4*.

- 11. Confirme que **Task (Tarea)** está ajustada a **S (Standard) (Estándar)** para todas las dianas del pocillo de control positivo.
- 12. Confirme que **Task (Tarea)** está ajustada a **N (Control negativo)** para todas las dianas del pocillo de control negativo.
- En la tabla Samples (Muestras), haga clic en Add (Añadir) para establecer los nombres. Cree un nombre de muestra único para cada pocillo de la placa física.

La plantilla tiene un control positivo y un control negativo asignado a unos pocillos como referencia. Si se necesitan más pocillos de control, cada uno de ellos debe tener un nombre único.

 Para asignar una muestra a un pocillo, seleccione el pocillo en la disposición de la placa y después seleccione la muestra en la tabla Samples (Muestras).
Confirme que Task (Tarea) está ajustada a U (Unknown) (Desconocida) para todas las dianas de los pocillos de muestras de paciente.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

- 15. En la pestaña **Run (Carrera)**, haga clic en **Start Run (Iniciar carrera)** y después seleccione el instrumento de la lista desplegable.
- **16.** Introduzca un nombre de archivo en el cuadro de diálogo que le pide que guarde el archivo del proceso y después guarde el archivo.

Realice la RT-PCR usando el Applied Biosystems[™] QuantStudio[™] 5 Dx Real-Time PCR Instrument

Calibración del fluorocromo para la QuantStudio [™] 5 Dx Real-Time	
PCR Instrument	53
QuantStudio [™] 5 Dx TD Software	54
QuantStudio [™] 5 Dx IVD Software	57

Calibración del fluorocromo para la QuantStudio[™] 5 Dx Real-Time PCR Instrument

Un instrumento existente estará calibrado para todos los fluorocromos que se utilizan en este kit. Asegúrese de que las calibraciones para el fluorocromo FAM[™], fluorocromo VIC[™], fluorocromo ABY[™] y fluorocromo JUN[™] sean actuales. Para todos los demás ensayos, consulte el proceso de calibración estándar.

QuantStudio[™] 5 Dx TD Software

Si está usted usando el QuantStudio[™] 5 Dx TD Software , siga los procedimientos de esta sección.

Si está utilizando el QuantStudio[™] 5 Dx IVD Software , consulte "QuantStudio[™] 5 Dx IVD Software" en la página 57.

Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Dx Real-Time PCR Instrument (QuantStudio[™] 5 Dx TD Software)

El archivo de la plantilla (archivo EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el QuantStudio[™] 5 Dx TD Software .

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo EDT:

TaqPath COVID-19 Kit Template QS5 Dx da1 0 2 v2-2.edt

 Transfiera el archivo EDT al ordenador que tiene el QuantStudio[™] 5 Dx TD Software , usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el QuantStudio[™] 5 Dx Real-Time PCR Instrument (QuantStudio[™] 5 Dx TD Software)

Para obtener más información sobre el QuantStudio[™] 5 Dx Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- En el QuantStudio[™] 5 Dx TD Software , en la casilla New Experiment (Nuevo experimento), seleccione Create New Experiment (Crear nuevo experimento) > Template (Plantilla).
- Navegue hasta el archivo EDT que ha transferido en "Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Dx Real-Time PCR Instrument (QuantStudio[™] 5 Dx TD Software)" en la página 54 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

- 3. En la pestaña Properties (Propiedades), introduzca o confirme lo siguiente.
 - Name (Nombre): Introduzca un nombre único
 - Instrument type (Tipo de instrumento): QuantStudio[™] 5 Dx System
 - Block type (Tipo de bloque): 96-Well 0.2-mL Block (Bloque de 96 pocillos de 0,2 ml)
 - Experiment type (Tipo de experimento): Standard Curve (Curva estándar)
 - Chemistry (Química): TaqMan[™] Reagents (Reactivos TaqMan[™])
 - Run Mode (Modo de ejecución): Standard (Estándar)
- **4.** En la pestaña **Method (Método)**, confirme que el **Volume (Volumen)** es de 25 μl, después confirme el protocolo térmico.

Paso	Temperatura	Tiempo	Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 5. En la pestaña Plate (Placa), haga clic en Quick Setup (Configuración rápida).
- 6. En el panel Plate Attributes (Atributos de la placa), confirme que Passive Reference (Referencia pasiva) está ajustada a None (Ninguna).
- 7. En la pestaña Plate (Placa), haga clic en Advanced Setup (Configuración avanzada).
- 8. En la tabla **Targets (Dianas)**, confirme que el fluorocromo notificador y las parejas diana son correctas).

Fluorocromo notificador	Detector	Inhibidor
FAM	ORF1ab	Ninguno
VIC	Gen N	Ninguno
ABY	Gen S	Ninguno
JUN	MS2	Ninguno

9. Confirme que las dianas anteriores están asignadas a cada pocillo en la disposición de la placa.

- **10.** En el panel de disposición de la placa, confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.
- 11. Confirme que Task (Tarea) está ajustada a S (Standard) (Estándar) para todas las dianas del pocillo de control positivo.
- 12. Confirme que **Task (Tarea)** está ajustada a **N (Control negativo)** para todas las dianas del pocillo de control negativo.
- 13. En la tabla Samples (Muestras), haga clic en Add (Añadir) para establecer los nombres de las muestras. Cree un nombre de muestra único para cada pocillo de la placa física.
- 14. Para asignar una muestra a un pocillo, seleccione el pocillo en la disposición de la placa y después seleccione la muestra en la tabla **Samples (Muestras)**.

Confirme que **Task (Tarea)** está ajustada a **U (Unknown) (Desconocida)** para todas las dianas de los pocillos de muestras de paciente.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

- 15. En la pestaña **Run (Carrera)**, haga clic en **Start Run (Iniciar carrera)** y después seleccione el instrumento de la lista desplegable.
- **16.** Introduzca un nombre de archivo en el cuadro de diálogo que le pide que guarde el archivo de la carrera y después guárdelo.

QuantStudio[™] 5 Dx IVD Software

Si está usted usando el QuantStudio[™] 5 Dx IVD Software , siga los procedimientos de esta sección.

Si está utilizando el QuantStudio[™] 5 Dx TD Software , consulte "QuantStudio[™] 5 Dx TD Software" en la página 54.

Transfiera el archivo de la plantilla (archivo EDT) para el QuantStudio[™] 5 Dx Real-Time PCR Instrument (QuantStudio[™] 5 Dx IVD Software)

El archivo de la plantilla (archivo EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el QuantStudio[™] 5 Dx IVD Software .

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo EDT:

TaqPath COVID-19 Kit Template QS5 Dx_da1_0_2_CE_IVD v2-2.edt

 Transfiera el archivo EDT al ordenador que tiene el QuantStudio[™] 5 Dx IVD Software , usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para la versión del instrumento y del software que está utilizando. De lo contrario, pueden producirse errores en el análisis.

La plantilla tiene que estar instalada en el QuantStudio[™] 5 Dx IVD Software antes de comenzar el proceso. Consulte "Instalar el archivo de plantilla en el QuantStudio[™] 5 Dx IVD Software" en la página 58.

Instalar el archivo de plantilla en el QuantStudio[™] 5 Dx IVD Software

Para instalar una plantilla, el usuario que ha iniciado sesión debe tener el permiso de SAE para **Manage Installed Templates (Gestionar plantillas instaladas)**. Para obtener información sobre los permisos de SAE, consulte la *Guía de usuario de QuantStudio*^T 5 *Dx TD Software* (N.º de pub. 100061667).

- 1. Abra el QuantStudio[™] 5 Dx IVD Software .
- 2. Cuando se le pida, inicie sesión con una cuenta de usuario con los permisos adecuados.
- 3. En la barra de menú, seleccione Tools (Herramientas) → Template Menu (Menú de plantillas).
- Haga clic en Install (Instalar) y, a continuación, haga clic en Yes (Sí) para confirmar el Template Installation Agreement (Acuerdo de instalación de plantilla).
- 5. Navegue hasta el archivo de plantilla que se ha transferido y haga clic en **Open** (Abrir).

Ahora la plantilla se ha instalado y está accesible en el **Template Menu (Menú de plantillas)**.

6. Haga clic en Close (Cerrar).

Configurar y ejecutar el QuantStudio[™] 5 Dx Real-Time PCR Instrument (QuantStudio[™] 5 Dx IVD Software)

Para obtener más información sobre el QuantStudio[™] 5 Dx Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

¡IMPORTANTE! Cuando se usa el QuantStudio[™] 5 Dx IVD Software , hay que colocar el control positivo en el pocillo A12 y el control negativo en el pocillo A1 de la placa física.

- En el QuantStudio[™] 5 Dx IVD Software, en la casilla New Experiment (Nuevo experimento), seleccione Experiment Setup (Configuración del experimento).
- Seleccione el archivo de plantilla que instaló usted en "Instalar el archivo de plantilla en el QuantStudio[™] 5 Dx IVD Software" en la página 58.
- 3. Haga clic en Create New Experiment (Crear nuevo experimento).
- En la tabla Samples (Muestras), haga clic en Add (Añadir) para establecer los nombres de las muestras. Cree un nombre de muestra único para cada pocillo de la placa física.

- 9
- 5. Para asignar una muestra a un pocillo, seleccione el pocillo en la disposición de la placa y después seleccione la muestra en la tabla **Samples (Muestras)**.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

- En la pestaña Run (Carrera), haga clic en Start Run (Iniciar carrera) y después seleccione el instrumento de la lista desplegable.
 Aparecerá el cuadro de diálogo Enter Reason for Change (Introduzca el motivo del cambio).
- 7. En el cuadro de diálogo Enter Reason for Change (Introduzca el motivo del cambio) haga clic en OK (Aceptar).
- 8. Introduzca un nombre de archivo en el cuadro de diálogo que le pide que guarde el archivo del proceso y después guarde el archivo.

Realice la RT-PCR usando el Applied Biosystems[™] QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)

	Calibración del fluorocromo para la QuantStudio [™] 7 Flex Real-Time PCR Instrument	60
•	Transfiera el archivo de la plantilla (archivo EDT) al QuantStudio [™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)	61
	Configurar y ejecutar el QuantStudio [™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)	61

Calibración del fluorocromo para la QuantStudio[™] 7 Flex Real-Time PCR Instrument

Un instrumento existente estará calibrado para muchos fluorocromos. Además de esos fluorocromos, el operador del instrumento debe calibrar el instrumento para el fluorocromo ABY[™] y el fluorocromo JUN[™] que se utilizan en este kit. Para todos los demás ensayos, consulte el proceso de calibración estándar.

Transfiera el archivo de la plantilla (archivo EDT) al QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)

El archivo de la plantilla (archivo EDT) contiene la configuración de la carrera del instrumento. Está instalado en el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software y debe transferirse con una unidad USB u otro método al ordenador en el que está instalado el QuantStudio[™] Real-Time PCR Software v1.3.

 En el ordenador que tiene el Applied Biosystems[™] COVID-19 Interpretive Software, navegue hasta el siguiente directorio (donde <...> es el directorio de instalación):

<...>\Applied Biosystems\COVID-19 Interpretive Software\Client\docs\User Documents

2. Seleccione el archivo EDT:

TaqPath COVID-19 Kit Template QS7 384 1_3 v2-2.edt

 Transfiera el archivo EDT al ordenador que tiene el QuantStudio[™] Real-Time PCR Software v1.3, usando una unidad USB u otro método.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo EDT apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

Configurar y ejecutar el QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)

Para obtener más información sobre el QuantStudio[™] 7 Flex Real-Time PCR Instrument, consulte los documentos que figuran en "Documentación relacionada" en la página 75.

- 1. En la pantalla de inicio del QuantStudio[™] Real-Time PCR Software v1.3, haga clic en **Template (Plantilla)**.
- Navegue hasta el archivo EDT que ha transferido en "Transfiera el archivo de la plantilla (archivo EDT) al QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)" en la página 61 y ábralo.

¡IMPORTANTE! Tenga cuidado de seleccionar el archivo de plantilla apropiado para el instrumento y el tipo de bloque. De lo contrario, pueden producirse errores en el análisis.

Capítulo 10 Realice la RT-PCR usando el Applied Biosystems[™] QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos) Configurar y ejecutar el QuantStudio[™] 7 Flex Real-Time PCR Instrument (bloque de 384 pocillos)

3. En la pestaña **Experiment Properties (Propiedades del experimento)**, introduzca o confirme lo siguiente.

- Experiment Name (Nombre del experimento): Introduzca un nombre único
- Instrument type (Tipo de instrumento): QuantStudio[™] 7 Flex System
- Block (Bloque): 384-well (384 pocillos)
- Type of experiment (Tipo de experimento): Standard Curve (Curva estándar)
- Reagents (Reactivos): TaqMan[™]
- Properties (Propiedades): Standard (Estándar)
- En la pestaña Define (Definir), en el panel Targets (Dianas), confirme que las dianas, fluorocromos notificadores e inhibidores están correctamente enumerados.

Diana	Fluorocromo notificador	Inhibidor
ORF1ab	FAM	Ninguno
Gen N	VIC	Ninguno
Gen S	ABY	Ninguno
MS2	JUN	Ninguno

5. En la pestaña **Define (Definir)**, en el panel **Samples (Muestras)**, defina un nombre de muestra único para cada pocillo de la placa física.

La plantilla tiene un control positivo y un control negativo que aparecen como referencia. Si se necesitan más pocillos de control, cada uno de ellos debe tener un nombre único.

Nota: El software no analizará los pocillos que no tengan un nombre de muestra.

- 6. En la pestaña **Define (Definir)**, confirme que **Passive Reference (Referencia pasiva)** está ajustada a **None (Ninguna)**.
- 7. En la pestaña **Assign (Asignar)**, confirme que cuatro dianas están asignadas a cada pocillo en la disposición de la placa.

Para asignar una diana a un pocillo, seleccione el pocillo y después marque la casilla de verificación **Assign (Asignar)**.

- 8. En la pestaña Assign (Asignar), en el panel Samples (Muestras), confirme el etiquetado de los pocillos de control.
 - La plantilla tiene un control positivo (CP) y un control negativo (CN) asignados a los pocillos como referencia.
 - Mueva las asignaciones de los pocillos de control copiando los pocillos de control existentes y pegándolos de acuerdo con su ubicación en la placa física.

Nota: Si las muestras de más de una carrera de extracción de ARN se incluyen en la misma placa de RT-PCR de 384 pocillos, debe haber un control negativo para cada carrera de extracción de ARN incluida en la placa de RT-PCR de 384 pocillos (consulte "Directrices para la RT-PCR" en la página 21). Etiquete cada control negativo con un nombre único, por ejemplo, *NC1*, *NC2*, *NC3* y *NC4*.

- 9. En la pestaña Assign (Asignar), confirme las asignaciones de Task (Tarea).
 - En los pocillos con control positivo (CP), confirme que **Task (Tarea)** está ajustada a **S** de Standard (Estándar) en todas las dianas.
 - En los pocillos con control negativo (CN), confirme que **Task (Tarea)** está ajustada a **N** de Negative (Negativo) en todas las dianas.
 - En los pocillos con una muestras de paciente, confirme que **Task (Tarea)** está ajustada a **U** de Unknown (Desconocido) den todas las dianas.
- 10. En la pestaña **Assign (Asignar)**, asigne un nombre de muestra a cada pocillo de la placa física.

Para asignar una muestra al pocillo, seleccione el pocillo y después marque la casilla de verificación **Assign (Asignar)**.

11. En la pestaña **Run Method (Método de carrera)**, confirme que **Reaction Volume Per Well (Volumen de reacción por pocillo)** es 20 μl y después confirme el protocolo térmico.

Paso	Temperatura Tiempo Número		Número de ciclos
Incubación de UNG	25 °C	2 minutos	1
Transcripción inversa	53 °C	10 minutos	1
Activación	95 °C	2 minutos	1
Desnaturalización	95 °C	3 segundos	
Hibridación/ extensión	60 °C	30 segundos	40

- 12. En la pestaña **Run (Carrera)**, haga clic en **Start Run (Iniciar carrera)** y después seleccione el instrumento de la lista desplegable.
- **13.** Introduzca un nombre de archivo en el cuadro de diálogo que le pide que guarde el archivo del proceso y después guarde el archivo.

Análisis y resultados

Obtener el Applied Biosystems[™] COVID-19 Interpretive Software

Para realizar análisis de datos e interpretación de resultados, debe utilizar el Applied Biosystems[™] COVID-19 Interpretive Software.

Para obtener el software, póngase en contacto con su equipo de soporte local o busque el número de teléfono del servicio local en el sitio web (consulte la información que aparece a continuación).

- 1. Vaya a https://www.thermofisher.com/contactus.
- 2. En el panel Step One (Paso uno), haga clic en Instrument Service (Mantenimiento del instrumento).
- **3.** En el panel **Step Two (Paso dos)**, introduzca el nombre de su instrumento de PCR en tiempo real y después seleccione su ubicación de la lista desplegable.
- 4. Para obtener el software, llame al número de teléfono del servicio local que se muestra en la pantalla.

Para ver las instrucciones de instalación del software, consulte el documento que figura en "Documentación relacionada" en la página 75.

11

Analizar los datos

Para obtener instrucciones detalladas sobre el uso del software, haga clic en el menú **Help (Ayuda)** en el COVID-19 Interpretive Software.

- Usando una unidad USB u otro método, transfiera los archivos SDS o EDS del ordenador que tiene el software de recogida de datos al ordenador que tiene el COVID-19 Interpretive Software.
- 2. En la pantalla Home (Inicio) del COVID-19 Interpretive Software, haga clic en el botón Import Samples (Importar muestras).
- 3. Seleccione los archivos SDS o los archivos EDS a importar y después haga clic en **Open (Abrir)**.

Después de la importación, el software analiza los datos de la carrera, realiza un análisis de control de calidad (CC) y calcula los resultados interpretados para cada muestra y control.

- En el panel Batches (Lotes) de la pantalla Home (Inicio), seleccione un lote para ver el estado y el resultado de cada muestra en la lista Samples (Muestras).
- Para generar un archivo de exportación del lote (CSV o XLSX), seleccione la casilla de verificación del lote, después haga clic en el botón Export Batch (Exportar lote) en la parte superior de la pantalla Home (Inicio). Haga clic en Open folder location (Abrir ubicación de carpeta) en el cuadro de diálogo y después navegue hasta el archivo exportado.
- 6. Para generar un archivo con el informe del lote (PDF), seleccione la casilla de verificación del lote y después haga clic en el botón Report Batch (Informar del lote) en la parte superior de la pantalla Home (Inicio). Haga clic en el cuadro de diálogo Open folder location (Abrir ubicación de carpeta) y después navegue hasta el informe.

Interpretación de los resultados

El Applied Biosystems[™] COVID-19 Interpretive Software interpreta los resultados. Para obtener información sobre los valores de C_t que el software utiliza para interpretar los resultados, consulte Tabla 14.

Control de calidad y validez de los resultados

En cada carrera debe haber como mínimo un control negativo y un control positivo. Se deben ejecutar pocillos de control negativo adicionales en cada extracción que se representa en una placa de RT-PCR en tiempo real. Todos los pocillos de control deben pasar por la placa de RT-PCR en tiempo real para que se consideren válidos.

El Applied Biosystems[™] COVID-19 Interpretive Software realiza automáticamente la validación de los resultados basándose en el comportamiento de los controles positivo y negativo.

	-				-	
	Resultado	Estado	MS2	Gen S	Gen N	ORF1ab
Repetir la						

Tabla 6 Interpretación de resultados de las muestras de pacientes

NEG	NEG	NEG	NEG	invalid (No Válido)	N/A	Repetir la prueba. Si el resultado repetido sigue siendo no válido, contemple recoger una nueva muestra.	
NEG	NEG	NEG	POS	Valid (Válido)	SARS-CoV-2 Not Detected (SARS-CoV-2 no detectado)	Informe de los resultados al profesional de la salud. Considere realizar pruebas para otros virus.	
Solo una diana del SARS-CoV-2 = POS		POS o NEG	Valid (Válido)	SARS-CoV-2 Inconclusive (SARS-CoV-2 no concluyente) ^[1]	Repetir la prueba. Si al repetir la prueba el resultado sigue siendo no concluyente y estuviera clínicamente indicado, se deben realizar pruebas de confirmación.		
Dos o más dianas de SARS-CoV-2 = POS		Dos o más dianas de SARS-CoV-2 = POS		POS o NEG	Valid (Válido)	Positive SARS-CoV-2 (Positivo para SARS-CoV-2)	Informe de los resultados al profesional de la salud y a las autoridades sanitarias públicas correspondientes, según proceda.

[1] Las muestras con un resultado no concluyente para SARS-CoV-2 deberán volver a someterse a una prueba más. La repetición del análisis debe realizarse a partir de la muestra biológica original que se recogió del paciente.

Acción

Características de rendimiento

Se evaluó el rendimiento analítico y clínico del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit mediante la determinación del límite de detección (LdD), caracterizando el impacto de las sustancias interferentes y la reactividad cruzada, como se describe en las siguientes secciones.

Límite de detección (LdD)

El estudio del LdD estableció la concentración vírica más baja del SARS-CoV-2 (copias genómicas equivalentes o ECG) que puede detectar el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit en un tipo de muestra particular al menos el 95 % de las veces. Las muestras de hisopo nasofaríngeo (HN) y lavado broncoalveolar (LBA) del banco se obtuvieron de pacientes de los Estados Unidos entre los años 2015 y 2019. Las muestras HN y LBA se agruparon, respectivamente, y se enriquecieron con ARN genómico vírico del SARS-CoV-2 purificado a varias concentraciones y después se procesaron usando el flujo de trabajo del kit. Para determinar el LdD para cada tipo de muestra, se usó un enfoque en tres fases. En las fases I y II, se estableció el LdD preliminar, que se confirmó en la fase III mediante la prueba de 20 réplicas.

Concentración	Páplios	C _t media			Interprotación	% positivo	
eficaz	периса	ORF1ab	N	S	MS2	Interpretacion	
	1	29,9	29,1	28,5	23,1	Positivo	
	2	30,1	29,3	29,7	24,0	Positivo	
	3	30,0	29,7	29,3	24,0	Positivo	
-	4	30,3	29,7	29,1	23,8	Positivo	
	5	30,2	29,6	29,6	23,7	Positivo	
10 ECG/ reacción	6	30,3	29,3	29,7	23,5	Positivo	100 %
	7	29,9	29,6	32,8	23,4	Positivo	
	8	30,2	29,8	29,2	23,8	Positivo	
	9	30,1	29,4	28,6	23,8	Positivo	
	10	30,1	29,4	29,1	24,0	Positivo	
	11	29,8	29,5	29,4	24,3	Positivo	

Tabla 7	Determinación de	LdD	en	LBA

Tabla 7 Determinación de LdD en LBA (cont.)

Concentración	Dáplico		C _t m	Internetación	0/ positivo		
eficaz	періїса	ORF1ab	N	S	MS2	Interpretacion	
	12	30,1	29,7	29,1	24,6	Positivo	
	13	30,7	30,1	28,4	25,1	Positivo	
10 ECG/ reacción	14	30,4	29,8	29,1	24,8	Positivo	
	15	30,2	29,8	29,7	24,9	Positivo	
	16	30,3	29,8	29,4	24,6	Positivo	100 %
	17	30,4	30,0	31,5	24,7	Positivo	
	18	30,4	30,1	29,3	24,9	Positivo	
	19	30,9	29,7	29,2	25,4	Positivo	
	20	30,3	29,9	29,4	25,7	Positivo	

Tabla 8 Determinación del LdD en muestras nasofaríngeas

Concentración	Páplion		C _t m	Interpreteción	% positivo		
eficaz		ORF1ab	Ν	S	MS2	Interpretación	
	1	30,0	28,9	35,7	25,7	Positivo	
	2	30,6	28,9	33,6	25,8	Positivo	
	3	30,2	28,8	32,0	25,8	Positivo	
	4	30,4	28,7	34,2	25,7	Positivo	
	5	30,5	29,0	31,4	25,8	Positivo	
10 ECG/ reacción	6	31,0	29,3	36,6	26,0	Positivo	100 %
	7	30,3	29,2	31,1	25,8	Positivo	
	8	31,1	29,2	31,8	26,5	Positivo	
	9	30,5	28,9	33,0	26,2	Positivo	
	10	30,3	28,8	34,7	26,8	Positivo	
	11	30,5	29,8	38,7	27,4	Positivo	
	12	31,6	29,7	35,0	27,6	Positivo	
	13	30,7	29,3	36,4	27,4	Positivo	
	14	31,6	28,8	31,3	27,2	Positivo	
	15	31,0	29,3	36,0	27,0	Positivo	

Concentración Réplico			C _t m	Interpretación			
eficaz	перпса	ORF1ab	N	S	MS2	Interpretacion	
	16	30,5	29,1	35,7	27,0	Positivo	
-	17	30,7	29,4	34,8	27,4	Positivo	
10 ECG/ reacción	18	30,7	29,3	34,6	27,5	Positivo	100 %
	19	31,0	29,3	35,9	28,7	Positivo	
	20	30,4	29,2	32,7	28,4	Positivo	

Tabla 8 Determinación del LdD en muestras nasofaríngeas (cont.)

Tabla 9 Resultados del LdD

Se realizaron estudios del LdD extrayendo 400 µl de cada muestra seguida por elución en 50 µl y después añadiendo 5 µl de elución a la reacción RT-PCR. El LdD de 10 ECG/reacción se calcula a partir de una concentración inicial de 250 ECG/ml de muestra.

Tipo de muestra	Límite de detección (ECG/reacción)		
Lavado broncoalveolar	10 ECG/reacción		
Hisopo nasofaríngeo	10 ECG/reacción		

Reactividad (inclusividad)

El análisis *In silico* se actualizó el 3 de junio de 2020, usando 25.998 genomas completos de SARS-CoV-2 de las bases de datos GISAID y GenBank. Basándonos en el análisis BLAST, el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit mapea con un 100 % de homología con > 99,99 % de los aislados conocidos de SARS-CoV-2 de la base de datos GISAID y con el 100 % de los aislados conocidos de la base de datos GenBank. El mapeado de un aislado concreto se consideró realizado con éxito si al menos dos de las tres dianas (ORF1ab, gen S y gen N) presentaban un 100 % de identidad.

Sustancias interferentes

Las muestras agrupadas de hisopo nasofaríngeo y lavado broncoalveolar negativos para SARS-CoV-2 se enriquecieron con ARN vírico de SARS-CoV-2 purificado a 3X el límite de detección (30 ECG/reacción) y sustancias potencialmente interferentes a las concentraciones anteriores. Cada sustancia se analizó con extracciones por triplicado. Los resultados se presentan en la Tabla 10.

Las muestras agrupadas de hisopo nasofaríngeo y lavado broncoalveolar negativos para SARS-CoV-2 se enriquecieron con sustancias potencialmente interferentes en las concentraciones anteriores. Cada sustancia se analizó con extracciones por triplicado. No se observaron resultados de falsos positivos en ninguna de las sustancias a las concentraciones analizadas.

C Tabla 10 Sustancias interferentes

	Concentración final	Acuerdo con los resultados esperados					
Sustancia interferente	en la muestra	Muestras LBA positivas	Muestras HN positivas	Muestras LBA negativas	Muestras HN negativas		
Ninguno	N/A	100 % ^[1]	100 %	100 %	100 %		
Mucina: glándula submaxilar bovina, tipo I-S	0,1 mg/ml	100 % ^[2]	100 %	100 %	100 %		
Sangre (humana)	1 % v/v	100 % ^[3]	100 %	100 %	100 %		
Aerosoles o gotas nasales: Nasacort [™]	10 % v/v	100 % ^[4]	100 % ^[4]	100 %	100 %		
Corticosteroides nasales: Dymista [™]	5 µg/ml	100 % ^[2]	100 %	100 %	100 %		
NeilMed [™] Nasogel [™]	1 % p/v	100 % ^[2]	100 %	100 %	100 %		
Influenza A H1N1 Brisbane/59/07	1 × 10 ⁵ TCID ₅₀ /ml	100 % ^[2]	100 %	100 %	100 %		
Pastillas para la garganta, anestésico oral y analgésico: Chloraseptic [™]	1 % p/v	100 % ^[3]	100 %	100 %	100 %		
Fosfato de oseltamivir	33 µg/ml	100 % ^[2]	100 %	100 %	100 %		
Antibiótico, pomada nasal: Bactroban [™]	5 µg/ml	100 % ^[2]	100 %	100 %	100 %		
Antibacteriano sistémico: Tobramicina	0,6 mg/ml	100 % ^[2]	100 %	100 %	100 %		
Medicamento homeopático para el alivio de la alergia: Similasan [™] Nasal	10% v/v	100 %	100 %	100 %	100 %		

^[1] Dos de las seis réplicas produjeron un valor de Ct >37 o sin determinar para el gen S, pero todas las réplicas se determinaron como positivas según el algoritmo de interpretación.

[2] Dos de las tres réplicas produjeron un valor de Ct >37 o sin determinar para el gen S, pero todas las réplicas se determinaron como positivas según el algoritmo de interpretación.

[3] Las tres réplicas produjeron un valor de Ct >37 o sin determinar para el gen S, pero todas las réplicas se determinaron como positivas según el algoritmo de interpretación.

[4] Una de las tres réplicas produjo un valor de Ct >37 o sin determinar para el gen S, pero todas las réplicas se determinaron como positivas según el algoritmo de interpretación

Reactividad cruzada

Análisis in silico de los siguientes cuarenta y tres (43) organismos:

Tabla 11 Organismos utilizados para el análisis in silico de reactividad cruzada

Coronavirus humano 229E	Rinovirus/Enterovirus
Coronavirus humano OC43	Parecovirus
Coronavirus humano HKU1	Candida albicans
Coronavirus humano NL63	Corynebacterium diphtheriae
SARS-coronavirus	<i>Legionella</i> (no pneumophila)
MERS-coronavirus	Bacillus anthracis (Ántrax)
Adenovirus	Moraxella catarrhalis
Metaneumovirus humano (MNVh)	Neisseria elongata y Neisseria meningitidis
Parainfluenza 1	Pseudomonas aeruginosa
Parainfluenza 2	Staphylococcus epidermidis
Parainfluenza 3	Streptococcus salivarius
Parainfluenza 4	Leptospira sp.
Influenza A	Chlamydophila pneumoniae
Influenza B	Chlamydophila psittaci
Influenza C	Coxiella burnetii (Fiebre Q)
Enterovirus	Staphylococcus aureus
Virus sincitial respiratorio A	Haemophilus influenzae
Virus sincitial respiratorio B	Legionella pneumophila
Bordetella pertussis	Mycobacterium tuberculosis
Mycoplasma pneumoniae	Streptococcus pneumoniae
Pneumocystis jirovecii (PJP)	Streptococcus pyogenes

Entre los organismos probados, se observó homología en la *Neisseria elongata* para los cebadores directo e inverso y la sonda para el gen N. Se observó ≥80 % de homología en el cebador directo, mientras que en el cebador inverso y la sonda se observó un 36 % de homología. Como la homología observada en el cebador inverso y la sonda del gen N es baja, el riesgo de amplificación inespecífica es bajo.

En el análisis Blast se observó el \geq 80 % de homología para un componente del ensayo (cebador directo, cebador inverso o sonda) para los aislados seleccionados. A pesar del \geq 80 % de homología de un componente del ensayo para los aislados

seleccionados, no se prevé que haya amplificación porque se necesita la hibridación de los tres componentes del ensayo para generar una señal. También encontramos múltiples casos en los que los diferentes componentes del ensayo tenían el \geq 80 % de homología con diferentes aislados de la misma especie. Por ejemplo, la cepa AFS029987 de *Bacillus anthracis* tenía el \geq 80 % de homología con el cebador directo ORF1ab, mientras que la cepa MCCC 1A01412 tenía el \geq 80 % de homología con el cebador inverso ORF1ab. Dado que se trata de dos organismos diferentes, no es probable que se produzca la amplificación. El análisis *in silico* indica que no es probable que se produzca una amplificación significativa de secuencias no diana que provoquen reactividad cruzada o que interfieran potencialmente con la detección del SARS-CoV-2.

Evaluación clínica

Se realizó un estudio de evaluación clínica para evaluar el rendimiento del TaqPath[™] COVID-19 CE-IVD RT-PCR Kit utilizando muestras de hisopo nasofaríngeo (HN) y lavado broncoalveolar (LBA).

Se analizaron un total de sesenta (60) muestras positivas artificiales:

- 30 muestras positivas artificiales de hisopos nasofaríngeos (HN)
- 30 muestras positivas artificiales de lavado broncoalveolar (LBA)

Las muestras se produjeron añadiendo concentraciones conocidas de ARN genómico vírico extraído del SARS-CoV-2, relacionadas con el LdD del producto, en matrices que dieron un resultado negativo con el TaqPath[™] COVID-19 CE-IVD RT-PCR Kit antes de añadir el ARN.

Además de las muestras positivas artificiales, se analizaron sesenta (60) muestras negativas:

- 30 muestras de hisopos nasofaríngeos (HN) negativos
- 30 muestras negativas de muestras de lavado broncoalveolar (LBA)
- Todas las muestras negativas produjeron resultados negativos

Los resultados de las muestras positivas se muestran en las siguientes tablas:

Concentración	Número de		C _t media				
la muestra	positivos	Gen S	ORF1ab	Gen N			
2X LdD	20/20 ^[1]	28,9	29,5	28,7			
3X LdD	5/5 ^[1]	28,8	29,2	28,5			
5X LdD	5/5	27,4	28,2	27,4			

Tabla 12 Estudio de evaluación clínica con LBA

[1] Inicialmente, dos muestras proporcionaron resultados no concluyentes y se volvieron a analizar. Después de repetir el análisis, los resultados fueron positivos. Los valores de la C_t media se han calculado a partir de los resultados de la nueva prueba.

Concentración	Número de positivos	C _t media			
la muestra		Gen S	ORF1ab	Gen N	
2X LdD	20/20 ^[1]	30,9	30,6	29,3	
3X LdD	5/5	30,0	30,1	28,8	
5X LdD	5/5	28,7	29,0	27,9	

Tabla 13 Estudio de evaluación clínica con HN

[1] Inicialmente, una muestra proporcionó un resultado no concluyente y se volvió a analizar. Después de repetir el análisis, el resultado fue positivo. Los valores de la C_t media se han calculado a partir de los resultados de la nueva prueba.

Valores de C_t de corte para las dianas de ensayo

El Applied Biosystems[™] COVID-19 Interpretive Software utiliza los siguientes valores de C_t de corte para las dianas de ensayo durante la interpretación de los resultados.

Tabla 14	Valores de	Ct de	corte para	las dianas	de ensayo
----------	------------	-------	------------	------------	-----------

Muestra	Diana	Valor de C _t de corte	
Positivo Control	MS2	Los valores de C _t válidos son >37	
Fositive Control	Dianas virales	Los valores de C _t válidos son ≤37	
Control pagative	MS2	Los valores de C _t válidos son ≤32	
Control negativo	Dianas virales	Los valores de C _t válidos son >37	
Musetres elípiose	MS2	Los valores de C _t válidos son \leq 32	
Muestras clínicas	Dianas virales	Los valores de C _t positivos son ≤37	

Documentación relacionada

Documento	Número de publicación
Applied Biosystems [™] 7500 Fast Dx Real-Time PCR Instrument Reference Guide	4406991
Applied Biosystems [™] 7300/7500/7500 Fast Real-Time PCR System Installation and Maintenance Guide	4347828
QuantStudio [™] 3 and 5 Real-Time PCR Systems Installation, Use, and Maintenance Guide	MAN0010407
QuantStudio [™] 5 Dx Real-Time PCR Instrument Guía de usuario para mantenimiento y administración	100061684
Guía de usuario de QuantStudio [™] 5 Dx TD Software	100061667
QuantStudio [™] 5 Dx IVD Software Guía de usuario	100061676
QuantStudio [™] 6 and 7 Flex Real-Time PCR Systems Maintenance and Administration Guide	4489821
QuantStudio [™] 6 and 7 Flex Real-Time PCR Systems Quick Reference	4489826
QuantStudio [™] Real-Time PCR Software Getting Started Guide	4489822
Referencia rápida de instalación del COVID-19 Interpretive Software CE IVD	MAN0019330

Asistencia al cliente y soporte técnico

Para obtener documentación e información adicional sobre este kit, visite: https://www.thermofisher.com/covid19ceivd

Para descargar instrucciones para el COVID-19 Interpretive Software, consulte "Obtener el Applied Biosystems[™] COVID-19 Interpretive Software" en la página 64.

Consulte el archivo Léame que se proporciona con el COVID-19 Interpretive Software antes de ponerse en contacto con el servicio de asistencia para el software.

Visite: https://www.thermofisher.com/contactus para obtener información del servicio técnico y asistencia para este kit, incluyendo:

- Números de teléfono de contacto de todo el mundo
- Información de asistencia para el producto
- Pedidos y soporte web

- Documentación sobre el producto, como por ejemplo:
 - Certificados de análisis
 - Hojas de datos de seguridad (Safety Data Sheets, HDS; también conocidas como MSDS)

Nota: Para conocer las HDS de los reactivos y productos químicos de otros fabricantes, póngase en contacto con el fabricante.

Garantía limitada del producto

Life Technologies Corporation y/o sus filiales garantizan sus productos tal y como se establece en los términos y condiciones para la venta de Life Technologies en **www.thermofisher.com/us/en/home/global/terms-and-conditions.html**. Si tiene cualquier duda, póngase en contacto con Life Technologies en **www.thermofisher.com/support**.

